【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點(diǎn),且直線恰好通過橢圓的右焦點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),記的面積分別為,求的最大值.

【答案】(1) (2)

【解析】試題分析:1先得,則,結(jié)合離心率及可得方程;

(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,易得,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為 ,與橢圓聯(lián)立得 ,利用韋達(dá)定理代入求解即可.

試題解析:

解:(1)不妨設(shè),則,

, ,聯(lián)立解得,

∴橢圓的標(biāo)準(zhǔn)方程為

(2)當(dāng)直線的斜率不存在時(shí),直線的方程為

此時(shí) ,

的面積相等.

.當(dāng)直線的斜率存在時(shí),

設(shè)直線的方程為 ,

設(shè) ,

聯(lián)立,

化為:

, ,

的面積相等.

時(shí), .當(dāng)且僅當(dāng)時(shí)取等號,

的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】備受矚目的巴西世界杯正在如火如荼的進(jìn)行,為確?倹Q賽的順利進(jìn)行,組委會決定在位于里約熱內(nèi)盧的馬拉卡納體育場外臨時(shí)圍建一個(gè)矩形觀眾候場區(qū),總面積為72m2(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個(gè)長度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/m.設(shè)該矩形區(qū)域的長為x(單位:m),租用鐵欄桿的總費(fèi)用為y(單位:元)

(1)將y表示為x的函數(shù);
(2)試確定x,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,并求出最小最小費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的圖形是圓.

(1)求t的取值范圍;

(2)求圓的面積取最大值時(shí)t的值;

(3)若點(diǎn)P(3,4t2)恒在所給圓內(nèi),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求f(x)的表達(dá)式和極值.

(2)若f(x)在區(qū)間[m,m+4]上是單調(diào)函數(shù),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)為增函數(shù),且,則等于(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知

1求證:AD平面BCE

(2)求證AD//平面CEF;

(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為2的正方體中, 分別為的中點(diǎn).

(1)求證: 平面;

(2)在棱上是否存在一點(diǎn),使得二面角的大小為,若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個(gè)極值點(diǎn),則a的取值范圍為(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

同步練習(xí)冊答案