【題目】已知函數(shù),若
(1)求的值,并寫出函數(shù)的最小正周期(不需證明);
(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個零點?若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)當時,證明是奇函數(shù);
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)當時,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的是( )
A.回歸直線一定過樣本中心( )
B.殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C.兩個模型中殘差平方和越小的模型擬合的效果越好
D.甲、乙兩個模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點, , 在圓上.
(1)求圓的方程;
(2)過點的直線交圓于, 兩點.
①若弦長,求直線的方程;
②分別過點, 作圓的切線,交于點,判斷點在何種圖形上運動,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了研究年宣傳費(單位:千元)對銷售量(單位:噸)和年利潤(單位:千元)的影響,搜集了近 8 年的年宣傳費和年銷售量數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
38 | 40 | 44 | 46 | 48 | 50 | 52 | 56 | |
45 | 55 | 61 | 63 | 65 | 66 | 67 | 68 |
(Ⅰ)請補齊表格中 8 組數(shù)據(jù)的散點圖,并判斷與中哪一個更適宜作為年銷售量關于年宣傳費的函數(shù)表達式?(給出判斷即可,不必說明理由)
(Ⅱ)若(Ⅰ)中的,且產(chǎn)品的年利潤與, 的關系為,為使年利潤值最大,投入的年宣傳費 x 應為何值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的動點,F(xiàn)是AB的中點,AC=BC=2,AA1=4.
(1)當E是棱CC1的中點時,求證:CF∥平面AEB1;
(2)在棱CC1上是否存在點E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓 的兩頂點為A,B如圖,離心率為 ,過其焦點F(0,1)的直線l與橢圓交于C,D兩點,并與x軸交于點P,直線AC與直線BD交于點Q.
(Ⅰ)當 時,求直線l的方程;
(Ⅱ)當點P異于A,B兩點時,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是定義在上的奇函數(shù).
(1)求的值和實數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)若且求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com