【題目】如圖,平面四邊形中,,是,中點,,,,將沿對角線折起至,使平面平面,則四面體中,下列結論不正確的是( )
A. 平面
B. 異面直線與所成的角為
C. 異面直線與所成的角為
D. 直線與平面所成的角為
【答案】C
【解析】
根據(jù)題意,依次分析命題:利用中位線性質可得,可證A選項成立,根據(jù)面面垂直的性質定理可判斷B選項,根據(jù)異面直線所成角的定義判斷C,根據(jù)線面角的定義及求解可判斷D,綜合可得答案.
A選項:因為,分別為和兩邊中點,所以,即平面,A正確;
B選項:因為平面平面,交線為,且,所以平面,即,故B正確;
C選項:取邊中點,連接,,則,所以為異面直線與所成角,又,,,即,故C錯誤,
D選項:因為平面平面,連接,則所以平面,連接FC,所以為異面直線與所成角,又,∴,
又, sin=,∴,D正確,
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數(shù)據(jù)的散點圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合與的關系,請計算相關系數(shù)并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);
(2)求關于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量約為多少?
附:相關系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績列金牌榜第三獎牌榜第二.某校體育愛好者在高三年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了60人,具體的調查結果如下表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 6 | 10 | 13 | 11 | 9 | 11 |
滿意人數(shù) | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年級全體學生中隨機抽取1名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班和二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為.
(Ⅰ)寫出曲線和直線的直角坐標方程;
(Ⅱ)設直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四個點,,,中有3個點在橢圓:上.
(1)求橢圓的標準方程;
(2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線與軸、軸分別交于、兩點,設直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是函數(shù)(,,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將()的圖像上所有的點( )
A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com