【題目】已知?jiǎng)訄A在圓外部且與圓相切,同時(shí)還在圓內(nèi)部與圓相切.

1)求動(dòng)圓圓心的軌跡方程;

2)記(1)中求出的軌跡為軸的兩個(gè)交點(diǎn)分別為、上異于、的動(dòng)點(diǎn),又直線軸交于點(diǎn),直線、分別交直線兩點(diǎn),求證:為定值.

【答案】(1);(2)詳見解析.

【解析】

(1)由直線與圓相切,則,則點(diǎn)的軌跡是以 ,為焦點(diǎn)的橢圓,即可求得橢圓方程;

(2)方法一:設(shè),分別求得直線的方程,直線的方程,分別求得點(diǎn)的坐標(biāo),則,即可求得為定值;
方法二:設(shè)直線的斜率為,直線的斜率為,聯(lián)立直線的方程與直線的方程,求出點(diǎn)坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程,即可求得,為定值.

(1)設(shè)動(dòng)圓的半徑為,由已知得,,,

點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,

設(shè)橢圓方程:),則,,則,

方程為:;

(2)解法一:設(shè) ,由已知得, ,則,

直線的方程為:,

直線的方程為:,

當(dāng)時(shí),,,

滿足,

,

為定值.

解法二:由已知得,,設(shè)直線的斜率為,直線的斜率為,由已知得,存在且不為零,

直線的方程為:,

直線的方程為:,

當(dāng)時(shí),,,

,

聯(lián)立直線和直線的方程,可得點(diǎn)坐標(biāo)為,

點(diǎn)坐標(biāo)代入橢圓方程中,得,

,

整理得 ,

,

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1nN*),數(shù)列{bn}滿足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}{bn}的通項(xiàng)公式;

2)若cn=-1n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;

3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對(duì)任意的nN*,都有DnnSn-a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的最大值為.

(1)求實(shí)數(shù)的值;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線上一點(diǎn),的焦點(diǎn).

(1)若,上的兩點(diǎn),證明:,依次成等比數(shù)列.

(2)過作兩條互相垂直的直線與的另一個(gè)交點(diǎn)分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為元,低于箱按原價(jià)銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準(zhǔn),每多箱送箱;②通過雙方議價(jià),買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購(gòu)買箱這種零件,兩單位都選擇方案②,且各自達(dá)成的成交價(jià)格相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購(gòu)買總價(jià)的數(shù)學(xué)期望為決策依據(jù),試問該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為2的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為.

(1)求雙曲線的方程;

(2)設(shè)分別為的左右頂點(diǎn),異于一點(diǎn),直線分別交軸于兩點(diǎn),求證:以線段為直徑的圓經(jīng)過兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,MBC頂點(diǎn)的坐標(biāo)為A(-12),B(1,4),C(3,2).

(1)ΔABC外接圓E的方程;

(2)若直線經(jīng)過點(diǎn)(0,4),且與圓E相交所得的弦長(zhǎng)為,求直線的方程;

(3)在圓E上是否存在點(diǎn)P,滿足,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案