設(shè)數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求證:數(shù)列為等比數(shù)列;
(Ⅱ)求通項(xiàng)公式
(Ⅲ)若數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和為.
(Ⅰ)見(jiàn)解析   (Ⅱ). (Ⅲ).
(I)根據(jù),可得,
從而可證明:為等比數(shù)列.
(II)在(I)的基礎(chǔ)上先求出的通項(xiàng)公式,然后再根據(jù)Sn求出an.
(III)先求出,
再根據(jù)an的通項(xiàng)公式求出bn,由于,所以易采用錯(cuò)位相減的方法求和
證明:(Ⅰ)因?yàn)?,所以 . 又,
所以 是首項(xiàng)為,公比為的等比數(shù)列.
(Ⅱ)由(Ⅰ)可得.當(dāng)時(shí),.
當(dāng)時(shí), .
.
(Ⅲ)因?yàn)?數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,所以.所以 .
所以 .
所以 .
所以
.
所以 .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知數(shù)列(常數(shù)),對(duì)任意的正整數(shù),并有滿足
(Ⅰ)求的值并證明數(shù)列為等差數(shù)列;
(Ⅱ)令,是否存在正整數(shù)M,使不等式恒成立,若存在,求出M的最小值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)等差數(shù)列的前項(xiàng)和為,且,
(1)求的通項(xiàng)公式及前項(xiàng)和
(2)求數(shù)列的前14項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知{an}為等差數(shù)列,且a7-2a4=-1,a3=0,則公差d=         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足:(其中常數(shù)λ>0,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)λ=4時(shí),是否存在互不相同的正整數(shù)r,s,t,使得ar,as,at成等比數(shù)列?若存在,給出r,s,t滿足的條件;若不存在,說(shuō)明理由;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.若對(duì)任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{}的前n項(xiàng)和為Sn,且S3 =6,則5a1+a7,的值為
A.12B.10C.24D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前n項(xiàng)和為,則數(shù)列的前10項(xiàng)和為(  )
A.56B.58C.62D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{}中,,, 則通項(xiàng)公式=___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案