【題目】已知函數f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函數f(x)的單調減區(qū)間.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若 且a2=bc,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x3+bx2+cx,其導函數y=f′(x)的圖象(如圖所示)經過點(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2個根,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設Ox、Oy是平面內相交成45°角的兩條數軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設 =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a∈R,則“關于x的方程x2+ax+1=0無實根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虛數單位)在復平面上對應的點位于第四象限”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , , 是中點.
(I)求證:直線平面.
(II)求證:直線平面.
(III)在上是否存在一點,使得二面角的大小為,若存在,確定的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若將函數y=cos 2x的圖象向左平移 個單位長度,則平移后圖象的對稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,以A為圓心,AD為半徑的圓交AC,AB于M,E.CE的延長線交⊙A于F,CM=2,AB=4.
(1)求⊙A的半徑;
(2)求CE的長和△AFC的面積
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com