【題目】已知拋物線焦點為,且,,過作斜率為的直線交拋物線于、兩點.
(1)若,,求;
(2)若為坐標原點,為定值,當變化時,始終有,求定值的大。
(3)若,,,當改變時,求三角形的面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】“微信搶紅包”自2015年以來異常火爆,在某個微信群某次進行的搶紅包活動中,若所發(fā)紅包的總金額為8元,被隨機分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線的焦點為,拋物線上一定點.
(1)求拋物線的方程及準線的方程;
(2)過焦點的直線(不經(jīng)過點)與拋物線交于兩點,與準線交于點,記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線()交于,兩點.
(1)當時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二手經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):
下面是關(guān)于的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)求關(guān)于的回歸方程并預測某輛型號二手汽車當使用年數(shù)為9年時售價大約為多少?(、小數(shù)點后保留兩位有效數(shù)字).
(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(jù)(2)求出的回歸方程預測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,. .
參考數(shù)據(jù):
,,,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列為公差不為0的等差數(shù)列,首項且,,成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前n項和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種汽車購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽油費共0.9萬元,汽車的維修費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.
(Ⅰ)設(shè)使用n年該車的總費用(包括購車費用)為f(n),試寫出f(n)的表達式;
(Ⅱ)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 12 | 11 | 13 | 10 | 8 |
發(fā)芽率顆 | 26 | 25 | 30 | 23 | 16 |
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;
(2)請根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(2)中所得的線性回歸方程,預測溫差為時,種子發(fā)芽的顆數(shù).
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com