11.已知奇函數(shù)y=f(x)滿足:f(x)=f(x+2),且當(dāng)x∈(0,1)時,f(x)=2x-1,則f(-4.5)=( 。
A.-2B.-1C.$-\frac{1}{2}$D.0

分析 由條件利用函數(shù)的奇偶性和周期性可得f(-4.5)=f(-0.5)=-f(0.5),計算求的結(jié)果.

解答 解:奇函數(shù)y=f(x)滿足:f(x)=f(x+2),且當(dāng)x∈(0,1)時,f(x)=2x-1,
則f(-4.5)=f(-0.5)=-f(0.5)=-(2×0.5-1)=0,
故選:D.

點評 本題主要考查函數(shù)的奇偶性和周期性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=f(x)在定義域R上是增函數(shù),且f(a+1)<f(2a),則a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤6\\ x-y≥0\\ y≥0\end{array}\right.$,則z=x+3y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線$l:\frac{x}{2}+\frac{y}{3}=1$的斜率為( 。
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n是兩條不同直線,α,β是兩個不同平面,則下列命題錯誤的是(  )
A.若α,β垂直于同一平面,則α與β可能相交
B.若m,n平行于同一平面,則m與n可能異面
C.若m,n不平行,則m與n不可能垂直于同一平面
D.若α,β不平行,則在α內(nèi)不存在與β平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.曲線y=sinx與直線x=-$\frac{π}{3}$,x=$\frac{π}{2}$及x軸所圍成的圖形的面積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)的圖象在點(2,f(2))處的切線方程為x+2y+1=0,則f(2)-2f′(2)的值為( 。
A.$\frac{1}{2}$B.1C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(-cosx,cosx),$\overrightarrow{c}$=(-1,0).
(1)若x=$\frac{π}{6}$,求向量$\overrightarrow{a}$.$\overrightarrow{c}$.
(2)當(dāng)x∈[$\frac{π}{2}$,$\frac{9π}{8}$]時,求f(x)=$\overrightarrow{a}$•$\overrightarrow$+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知隨機變量X滿足D(X)=3,則D(3X+2)=( 。
A.2B.27C.18D.20

查看答案和解析>>

同步練習(xí)冊答案