設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0).若f(x)在區(qū)間[
π
6
π
2
]上具有單調(diào)性,且f(
π
2
)=f(
3
)=-f(
π
6
),則f(x)的最小正周期為
 
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:f(
π
2
)=f(
3
)
得出函數(shù)的一條對(duì)稱軸,結(jié)合f(x)在區(qū)間[
π
6
,
π
2
]上具有單調(diào)性,且f(
π
2
)=-f(
π
6
)
可得到函數(shù)的半周期,進(jìn)一步求得周期.
解答: 解:由f(
π
2
)=f(
3
)
得到:函數(shù)的對(duì)稱軸方程x=
π
2
+
3
2
=
7
12
π
,
則:x=
π
2
離最近的對(duì)稱軸的距離為:
12
-
π
2
=
π
12

f(
π
2
)=-f(
π
6
)
且函數(shù)f(x)在區(qū)間[
π
6
,
π
2
]上具有單調(diào)性,
所以:x=
π
6
離最近的對(duì)稱軸的距離也為
π
12
,
則:
T
2
=
12
-
π
6
+
π
12
=
π
2

所以:T=π.
故答案為:π.
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):函數(shù)的圖象的應(yīng)用,重點(diǎn)培養(yǎng)學(xué)生觀察圖形的能力.屬于中等題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:
(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2
(2)
tan2α-cot2α
sin2α-cos2α
=sec2α+csc2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,
an-1
an
=
an-1+1
1-an
(n≥2,n∈N*
(1)求證:數(shù)列{
1
an
}是等差數(shù)列
(2)求數(shù)列{anan+1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足3an+1+an=4(n≥1,n∈N*),且a1=9,其前n項(xiàng)之和為Sn,則滿足不等式|Sn-n-6|<
1
40
成立的n的最小值是( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行于直線x-y+1=0,且與圓x2+y2=2相切的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=x與函數(shù)g(x)=
1
x
(x>0)的圖象交于點(diǎn)Q,若P,M分別是直線y=x與函數(shù)g(x)=
1
x
(x>0)的圖象上異于點(diǎn)Q的兩點(diǎn),若對(duì)于任意點(diǎn)M,有|PM|≥|PQ|恒成立,則點(diǎn)P橫坐標(biāo)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x2+y2≤1
y≥x+a
,且z=x+y的最大值為
2
,則實(shí)數(shù)a的取值范圍是(  )
A、a≤-1
B、-
2
≤a≤0
C、a≤0
D、a≥
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)下列各式:
(1)4a 
2
3
b -
1
3
÷(-
2
3
a -
1
3
b -
1
3
)•
2lg2+lg3
1+lg2.4-lg2
,(a,b均為正數(shù));
(2)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11
2
π-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,5天中,兩臺(tái)機(jī)床每天的次品數(shù)分別是:
甲 1  0  2  0  2         
乙 1  0  1  0  3
(Ⅰ)從甲機(jī)床這5天中隨機(jī)抽取2天,求抽到的2天生產(chǎn)的零件次品數(shù)均不超過(guò)1個(gè)的概率;
(Ⅱ)哪臺(tái)機(jī)床的性能較好?

查看答案和解析>>

同步練習(xí)冊(cè)答案