已知函數(shù)數(shù)學(xué)公式.若函數(shù)的定義域和值域都是[1,a](a>1),求a的值.

解:由已知中函數(shù)
我們可得函數(shù)的頂點(diǎn)為(1,1)
故函數(shù)在區(qū)間[1,a]上為增函數(shù)
又∵函數(shù)的定義域和值域都是[1,a]

解得:a=3,或a=1(舍去).
故a=3
分析:由已知中函數(shù)的解析式,我們可以判斷出函數(shù)在區(qū)間[1,a]上的單調(diào)性,進(jìn)而構(gòu)造出關(guān)于a的方程,解方程即可求出a的值.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),其中根據(jù)二次函數(shù)的圖象和性質(zhì),判斷出函數(shù)在區(qū)間[1,a]上為增函數(shù)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有(  )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,再次投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價(jià)定在100元到300元之間較為合理.當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬件;當(dāng)銷售單價(jià)超過100元,但不超過200元時(shí),每件產(chǎn)品的銷售價(jià)格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價(jià)超過200元,但不超過300元時(shí),每件產(chǎn)品的銷售價(jià)格在200元的基礎(chǔ)上,每增加10元,年銷售量將再減少1萬件.設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利為w(萬元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x之間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是贏利還是虧損?若贏利,最大利潤是多少?若虧損,最少虧損是多少?(
195225
=1521)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化妝品生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2007年度進(jìn)行一系列促銷活動(dòng),經(jīng)過市場(chǎng)調(diào)查和測(cè)算,化妝品的年銷量x萬件與年促銷費(fèi)t萬元之間滿足3-x=
kt+1
(t≥0,k≠0且k為常數(shù)),如果不搞促銷活動(dòng),化妝品的年銷量只能是1萬件.已知2007年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件化妝品需再投入32萬元的生產(chǎn)費(fèi)用.若將每件化妝品的售價(jià)定為:平均每件促銷費(fèi)的一半與每件生產(chǎn)成本的150%之和,則當(dāng)年生產(chǎn)的化妝品正好能銷完.
(注:利潤=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
(1)求常數(shù)k的值;
(2)將2007年的利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(3)該企業(yè)2007年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案