【題目】如圖,已知圓Cy軸相切于點(diǎn)T(0,2),與x軸的正半軸交于兩點(diǎn) (點(diǎn)在點(diǎn)的左側(cè)),且.

(1)求圓C的方程;(2)過(guò)點(diǎn)任作一直線(xiàn)與圓O 相交于兩點(diǎn),連接,求證: 定值.

【答案】1 (2)見(jiàn)解析

【解析】試題分析:(1)由題意,得到圓C的方程為2(y2)2;(2直線(xiàn)ABx1ty,聯(lián)立圓O方程,得到韋達(dá)定理,求得kANkBN為定值。

試題解析:

(1)因?yàn)閳ACy軸相切于點(diǎn)T(0,2),可設(shè)圓心的坐標(biāo)為(m,2)(m>0),

則圓C的半徑為m,又|MN|3,所以m242,解得m,所以圓C的方程為2(y2)2.

(2)(1)M(1,0)N(4,0),當(dāng)直線(xiàn)AB的斜率為0時(shí),易知kANkBN0,即kANkBN0.

當(dāng)直線(xiàn)AB的斜率不為0時(shí),設(shè)直線(xiàn)ABx1ty,將x1ty代入x2y240,并整理得,(t21)y22ty30.

設(shè)A(x1y1),B(x2,y2),

所以

kANkBN0.

綜上可知,kANkBN為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點(diǎn),如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=ABC=90°,BC=CD=2BE=2,點(diǎn)M是棱AD的中點(diǎn)

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廣場(chǎng)有一塊不規(guī)則的綠地如圖所示,城建部門(mén)欲在該地上建造一個(gè)底座為三角形的環(huán)境標(biāo)志,小李,小王設(shè)計(jì)的底座形狀分別為, ,經(jīng)測(cè)量米, 米, 米,

(I)求的長(zhǎng)度;

(Ⅱ)若環(huán)境標(biāo)志的底座每平方米造價(jià)為元,不考慮其他因素,小李,小王誰(shuí)的設(shè)計(jì)建造費(fèi)用最低(請(qǐng)說(shuō)明理由),最低造價(jià)為多少?(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.

(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程ybxa;

(2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:線(xiàn)性回歸方程ybxa中, ,ab,其中, 為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)進(jìn)駐城市,綠色出行引領(lǐng)時(shí)尚.某市有統(tǒng)計(jì)數(shù)據(jù)顯示,2017年該市共享單車(chē)用戶(hù)年齡登記分布如圖1所示,一周內(nèi)市民使用單車(chē)的頻率分布扇形圖如圖2所示.若將共享單車(chē)用戶(hù)按照年齡分為“年輕人”(20歲至39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類(lèi),將一周內(nèi)使用的次數(shù)為6次或6次以上的稱(chēng)為“經(jīng)常使用單車(chē)用戶(hù)”,使用次數(shù)為5次或不足5次的稱(chēng)為“不常使用單車(chē)用戶(hù)”.已知在“經(jīng)常使用單車(chē)用戶(hù)”中有是“年輕人”.

(1)現(xiàn)對(duì)該市市民進(jìn)行“經(jīng)常使用共享單車(chē)與年齡關(guān)系”的調(diào)查,采用隨機(jī)抽樣的方法,抽取一個(gè)容量為200的樣本,請(qǐng)你根據(jù)圖表中的數(shù)據(jù),補(bǔ)全下列列聯(lián)表,并根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),判斷能有多大把握可以認(rèn)為經(jīng)常使用共享單車(chē)與年齡有關(guān)?

(2)將頻率視為概率,若從該市市民中隨機(jī)任取3人,設(shè)其中經(jīng)常使用共享單車(chē)的“非年輕人”人數(shù)為隨機(jī)變量,求的分布與期望.

(參考數(shù)據(jù):獨(dú)立性檢驗(yàn)界值表,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)過(guò)橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn), 中點(diǎn), 的斜率為.

(1)求橢圓的方程;

(2)設(shè)是橢圓的動(dòng)弦,且其斜率為1,問(wèn)橢圓上是否存在定點(diǎn),使得直線(xiàn)的斜率滿(mǎn)足?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案