設(shè)等比數(shù)列{}的前項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項(xiàng)和.

(Ⅰ),(Ⅱ).

解析試題分析:(Ⅰ)利用數(shù)列前n項(xiàng)和求通項(xiàng)得到,利用計(jì)算得到;
(Ⅱ)利用對(duì)數(shù)運(yùn)算性質(zhì)得到;進(jìn)而得到,再利用裂項(xiàng)相消法求其前n項(xiàng)和.
試題解析:(Ⅰ)依題                      1分
當(dāng)時(shí), ,                     2分
當(dāng)時(shí), ,              4分
又因?yàn)閧}為等比數(shù)列,                  5分
所以.                                        6分
(Ⅰ)另解:                             1分
當(dāng)時(shí), ,                        2分.
當(dāng)時(shí), ,            4分

解得                                6分
(Ⅱ)由(1)                                7分
      9分

所以                12分
考點(diǎn):數(shù)列利用前n項(xiàng)和求通項(xiàng),裂項(xiàng)相消法求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的首項(xiàng)為),前項(xiàng)和為,且).設(shè),).
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),若對(duì)任意,恒成立,求的取值范圍;
(3)當(dāng)時(shí),試求三個(gè)正數(shù),的一組值,使得為等比數(shù)列,且,,成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)(1,)是函數(shù))的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足=+).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列{項(xiàng)和為,問(wèn)>的最小正整數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足
(1)求的通項(xiàng)公式;
(2)求和 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列的首項(xiàng),公比,設(shè)數(shù)列的通項(xiàng)公式,數(shù)列,的前項(xiàng)和分別記為,,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及的值;
(Ⅱ)比較+++ +Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)求數(shù)列的前項(xiàng)和
(Ⅲ)若存在,使得成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
( 1 )若,求;
( 2 ) 若,證明是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案