【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)EF分別是棱PC、PD的中點(diǎn),則

①棱ABPD所在直線垂直;

②平面PBC與平面ABCD垂直;

③△PCD的面積大于△PAB的面積;

④直線AE與直線BF是異面直線.

以上結(jié)論正確的是________.(寫(xiě)出所有正確結(jié)論的序號(hào))

【答案】①③

【解析】由條件可得AB⊥平面PAD

ABPD,故①正確;

若平面PBC⊥平面ABCD,由PBBC,

PB⊥平面ABCD,從而PAPB,這是不可能的,故②錯(cuò);SPCDCD·PD,SPABAB·PA,

ABCD,PD>PA知③正確;

E、F分別是棱PC、PD的中點(diǎn),

可得EFCD,又ABCD

EFAB,故AEBF共面,④錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用二分法求的近似值(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:

若抽取學(xué)生人,成績(jī)分為(優(yōu)秀),(良好),(及格)三個(gè)等次,設(shè)分別表示數(shù)學(xué)成績(jī)與地理成績(jī),例如:表中地理成績(jī)?yōu)?/span>等級(jí)的共有(人),數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)且地理成績(jī)?yōu)?/span>等級(jí)的共有8人.已知均為等級(jí)的概率是.

(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是,求的值;

(2)已知,求數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)的人數(shù)比等級(jí)的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱(chēng)為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:

①函數(shù)存在“線性覆蓋函數(shù)”;

②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無(wú)數(shù)個(gè);

為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;

④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則

其中所有正確結(jié)論的序號(hào)是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角AB,C對(duì)應(yīng)的邊分別是a,b,c,已知cos 2A3cos(BC)1.

(1)求角A的大。

(2)△ABC的面積S5,b5,求sin Bsin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下三個(gè)等式:;.則下列函數(shù)中,不滿(mǎn)足其中任何一個(gè)等式的函數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)若,且在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,求證:在區(qū)間上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿(mǎn)足

(1)求的解析式;(2)作出函數(shù)的圖像,并寫(xiě)出其單調(diào)區(qū)間;

(3)求在區(qū)間)上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱(chēng)為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案