設(shè)函數(shù)(其中),且方程的兩個根分別為、.
(1)當且曲線過原點時,求的解析式;
(2)若在無極值點,求的取值范圍.
(1);(2)實數(shù)的取值范圍是.
解析試題分析:(1)先將代入函數(shù)的解析式,利用“曲線過原點”先求出的值,然后求出二次函數(shù)的解析式,利用“、為二次方程的兩個根”并結(jié)合韋達定理求出、的值,最終確定函數(shù)的解析式;(2)先利用“、為二次方程的兩個根”并結(jié)合韋達定理確定、與的關(guān)系,然后求出,對與進行分類討論,將在無極值點進行轉(zhuǎn)化,對進行檢驗;當時,得到,從而求出實數(shù)的取值范圍.
試題解析:(1)當時,,
由于曲線過原點,則有,,
,令,
由題意知,、是二次函數(shù)的兩個零點,由韋達定理得,
,;
(2),
由于、是二次函數(shù)的兩個零點,由韋達定理得,,
解得,,,
,
當時,,令,解得,當時,,當,,
此時為函數(shù)的極小值點,不合乎題意;
故,由于函數(shù)在無極值點,則,
即,化簡得,解得,
故實數(shù)的取值范圍是.
考點:1.導數(shù);2.韋達定理
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象如圖,直線在原點處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.
(1)求的解析式;
(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,函數(shù).
(1)當時,寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)當時,求函數(shù)在區(qū)間[1,2]上的最小值;
(3)設(shè),函數(shù)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較與的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè).
(Ⅰ)若對一切恒成立,求的取值范圍;
(Ⅱ)設(shè),且是曲線上任意兩點,若對任意的,直線AB的斜率恒大于常數(shù),求的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),其中.
(1)若在處取得極值,求常數(shù)的值;
(2)設(shè)集合,,若元素中有唯一的整數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的最小值;
(Ⅲ)若存在(是自然對數(shù)的底數(shù))使,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com