【題目】對于定義在上的函數(shù),若存在實數(shù)、)使得對于任意 都有成立,則稱函數(shù)是帶狀函數(shù);若存在最小值,則稱為帶寬.

1)判斷函數(shù) 是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,請說明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù)是帶狀函數(shù)的充要條件是.

【答案】1)是,帶寬為2;(2)證明見解析;(3)證明見解析

【解析】

1)根據(jù)函數(shù)關(guān)系,即可判定是帶狀函數(shù);

2)分別證明即可得證;

3)處理絕對值,將函數(shù)寫成分段函數(shù)形式,分別證明充分性和必要性.

1)考慮兩條直線,即: ,

斷函數(shù) 是帶狀函數(shù),帶寬為2

2)函數(shù)),

當(dāng)時,所以有,有,

當(dāng)時,,即

所以有,所以,

綜上所述,

所以函數(shù))是帶狀函數(shù);

3)函數(shù),

充分性:當(dāng)時,,

,存在兩條直線滿足題意,即該函數(shù)為帶狀函數(shù);

必要性:當(dāng)為帶狀函數(shù),

則存在,

假設(shè)

不妨考慮,

則直線與兩條直線中至少一條相交,所以不滿足,

所以不滿足題意.

綜上所述:函數(shù)是帶狀函數(shù)的充要條件是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、BC、A1、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利,根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時間間隔近似地滿足函數(shù)關(guān)系:

1)若平均每班地鐵的載客人數(shù)不超過1560人,試求發(fā)車時間間隔的取值范圍;

2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當(dāng)發(fā)車時間間隔為多少時,平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 為兩條不同的直線, , 為兩個不同的平面,對于下列四個命題:

, , ,

, ,

其中正確命題的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一學(xué)生有1000名學(xué)生參加一次數(shù)學(xué)小測驗,隨機(jī)抽取200名學(xué)生的測驗成績得如圖所示的頻率分布直方圖:

1)求該學(xué)校高一學(xué)生隨機(jī)抽取的200名學(xué)生的數(shù)學(xué)平均成績和標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);

2)試估計該校高一學(xué)生在這一次的數(shù)學(xué)測驗成績在區(qū)間之內(nèi)的概率是多少?測驗成績在區(qū)間之外有多少位學(xué)生?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】榆林市政府堅持保護(hù)環(huán)境和節(jié)約資源,堅持推進(jìn)生態(tài)文明建設(shè)。若市財政局下?lián)軐??/span>100百萬元,分別用于植綠護(hù)綠和處理污染兩個生態(tài)維護(hù)項目,植綠護(hù)綠項目五年內(nèi)帶來的生態(tài)收益可表示為投放資金(單位:百萬元)的函數(shù)(單位:百萬元),處理污染項目五年內(nèi)帶來的生態(tài)收益可表示為投放資金單位:(單位:百萬元)的函數(shù)(單位:百萬元)

(1)設(shè)分配給植綠護(hù)綠項目的資金為(百萬元),則兩個生態(tài)項目五年內(nèi)帶來的收益總和為y,寫出y關(guān)于的函數(shù)解析式和定義域;

(2)試求出y的最大值,并求出此時對兩個生態(tài)項目的投資分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求的通項公式;

(Ⅱ)設(shè)數(shù)列的前項和為,若數(shù)列滿足,且對任意的恒成立,求的最小值

查看答案和解析>>

同步練習(xí)冊答案