已知x,y滿足約束條件
x+3y-3≤0
x-y+1≥0
y≥-1
,則z=2x-y的最大值為(  )
A、-3B、1C、13D、15
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=2x-y的最大值.
解答: 解:由z=2x-y,得y=2x-z,作出不等式對(duì)應(yīng)的可行域(陰影部分),
平移直線y=2x-z,由平移可知當(dāng)直線y=2x-z,
經(jīng)過(guò)點(diǎn)C時(shí),直線y=2x-z的截距最小,此時(shí)z取得最大值,
x+3y-3=0
y=-1
,解得
x=6
y=-1
,即C(6,-1).
將C的坐標(biāo)代入z=2x-y,得z=12-(-1)=13,
即目標(biāo)函數(shù)z=2x-y的最大值為13.
故選:C
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x+1>0},B={-2,-1,0},則(∁RA)∩B=(  )
A、{-2,-1}
B、{-2}
C、{-1,0,1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0),命題q:實(shí)數(shù)x滿足
|x-1|≤2
x+3
x-2
>0

(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,輸出的S的值為( 。
A、0
B、-1
C、1
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一輛汽車(chē)在行駛中由于遇到緊急情況而剎車(chē),以速度v(t)=7-2t+
5
1+t
(t的單位:s,υ的單位:m/s)行駛至停止,在此期間汽車(chē)?yán)^續(xù)行駛的距離(單位:m)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的底面是正方形,側(cè)棱PC⊥底面ABCD,E是側(cè)棱PC上的動(dòng)點(diǎn),F(xiàn)是棱AB的中點(diǎn).
(1)無(wú)論點(diǎn)E在任何位置時(shí),是否都有BD⊥AE?并證明你的結(jié)論;
(2)當(dāng)E為棱PC中點(diǎn)時(shí),求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,(n+1)an+1=nan(n∈N*),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)A(1,0)的直線l1與曲線C:
x=2+2cosα
y=1+2sinα
(α是參數(shù))交于P,Q兩點(diǎn),與直線l2:x+y+2=0交于點(diǎn)N.若PQ的中點(diǎn)為M,
(1)求|AM|•|AN|的值;
(2)求|AP|+|AQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,對(duì)任意n∈N*,都有
a
 
n+1
=
a
 
n
2
a
 
n
+1
,
b
 
n
=
1
a
 
n

(Ⅰ)證明:數(shù)列{bn}為等差數(shù)列,并求出an;
(Ⅱ)設(shè)數(shù)列{an•an+1}的前n項(xiàng)和為T(mén)n,求證:
T
 
n
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案