分析 (Ⅰ)設(shè)P點(diǎn)的坐標(biāo)為(x,y),利用兩點(diǎn)間的距離公式表示出|PA|、|PB|,代入等式|PA|=$\sqrt{2}$|PB|,化簡整理得答案.
(Ⅱ)設(shè)拋物線y2=x上的點(diǎn)Q(m,n),則n2=m.|QC|=$\sqrt{(m-3)^{2}+{n}^{2}}$=$\sqrt{(m-3)^{2}+m}$=$\sqrt{(m-\frac{5}{2})^{2}+\frac{11}{4}}$,即可得出結(jié)論.
解答 解:(Ⅰ)設(shè)P點(diǎn)的坐標(biāo)為(x,y),
∵A(-1,0)、B(1,0),動點(diǎn)P滿足|PA|=$\sqrt{2}$|PB|,
∴平方得(x+1)2+y2=2[(x-1)2+y2],
整理得(x-3)2+y2=8.
(Ⅱ)設(shè)拋物線y2=x上的點(diǎn)Q(m,n),則n2=m.
|QC|=$\sqrt{(m-3)^{2}+{n}^{2}}$=$\sqrt{(m-3)^{2}+m}$=$\sqrt{(m-\frac{5}{2})^{2}+\frac{11}{4}}$,
∴m=$\frac{5}{2}$時,P到曲線C的對稱中心的最短距離為$\frac{\sqrt{11}}{2}$.
點(diǎn)評 本題考查動點(diǎn)的軌跡的求法,著重考查了兩點(diǎn)間的距離公式、圓的標(biāo)準(zhǔn)方程,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{8\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $2\sqrt{3}$ | D. | $2\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | 2$\sqrt{10}$ | D. | 2$\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com