已知
lim
n→∞
(
n2+1
n+1
-an+b)=0
,則點(diǎn)M(a,b)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
分析:把原式整理為
lim
n→∞
(1-a)n2+(b-a)n+b
n+1
=0
,由此得
1-a=0
b-a=0
,解得a=b=1.由此可知點(diǎn)M(a,b)所在的象限.
解答:解:∵
lim
n→∞
(
n2+1
n+1
-an+b)=0
,
lim
n→∞
(
n2+1
n+1
-an+b)
=
lim
n→∞
(1-a)n2+(b-a)n+b
n+1
=0
,
1-a=0
b-a=0
,解得a=b=1.
故選A.
點(diǎn)評(píng):本題考查極限的運(yùn)算,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,當(dāng)n∈N+時(shí),Sn=an-n-1.
(1)求a2,a3,a4
(2)猜想an,并用數(shù)學(xué)歸納法證明你的猜想;
(3)已知
lim
n→∞
an
an+1+(a+1)n
=
1
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
lim
n→∞
(1+
1
n
)n=e
,則
lim
n→∞
(1+
1
n-2
)2n
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•嘉定區(qū)二模)已知
lim
n→∞
2n
2n+1+(a-2)n
=
1
2
,則實(shí)數(shù)a的取值范圍是
(0,4)
(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)設(shè)對(duì)于任意實(shí)數(shù)x、y,函數(shù)f(x)、g(x)滿足f(x+1)=
1
3
f(x),且f(0)=3,g(x+y)=g(x)+2y,g(5)=13,n∈N*
(Ⅰ)求數(shù)列{f(n)}、{g(n)}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=g[
n
2
f(n)
],求數(shù)列{cn}的前n項(xiàng)和Sn;
(Ⅲ)已知
lim
n
 
2n+3
3n-1
=0,設(shè)F(n)=Sn-3n,是否存在整數(shù)m和M,使得對(duì)任意正整數(shù)n不等式m<F(n)<M恒成立?若存在,分別求出m和M的集合,并求出M-m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•奉賢區(qū)一模)已知
lim
n→+∞
(b-1)n-2
3n-1
=2,則b=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案