【題目】已知數(shù)列的前項(xiàng)和.
(1)計(jì)算,,,;
(2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
【答案】(1)依題設(shè)可得,,,;
(2)猜想:.
證明:①當(dāng)時(shí),猜想顯然成立.
②假設(shè)時(shí),猜想成立,
即.那么,當(dāng)時(shí),,即.
又,所以,
從而.即時(shí),猜想也成立.
故由①和②,可知猜想成立.
【解析】試題分析:(1)采用賦值法,令,,先求,時(shí),,求,然后令和時(shí),分別求和;(2)根據(jù)(1)的結(jié)果,將前4項(xiàng)寫成,,,,觀察前4項(xiàng)的形式,猜想,最后按數(shù)學(xué)歸納法證明.
試題解析:(1)依題設(shè)可得,,,
(2)猜想:.
證明:①當(dāng)n=1時(shí),猜想顯然成立.
②假設(shè)n=k()時(shí),猜想成立,即.
那么,當(dāng)n=k+1時(shí),, 即.
又, 所以,
從而.
即n=k+1時(shí),猜想也成立. 故由①和②,可知猜想成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的短軸長(zhǎng)為2,且函數(shù)的圖象與橢圓僅有兩個(gè)公共點(diǎn),過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為線段的中垂線與橢圓的一個(gè)公共點(diǎn),求面積的最小值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(),,且直線與曲線相切.
(1)求的值;
(2)若對(duì)內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等差數(shù)列的前項(xiàng)和,且, .
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求證: ;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于兩點(diǎn)且.求證: 的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了300名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合計(jì) | |
男大學(xué)生 | 180 | ||
女大學(xué)生 | 45 | ||
合計(jì) | 200 |
(Ⅰ)根據(jù)題意完成表格;
(Ⅱ)是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?
附:,
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | .072 | 2.706 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的解析式及單調(diào)減區(qū)間;
(2)是否存在常數(shù),使得對(duì)于定義域的任意恒成立,若存在,求出 的值;若
不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線, 是焦點(diǎn),直線是經(jīng)過(guò)點(diǎn)的任意直線.
(Ⅰ)若直線與拋物線交于、兩點(diǎn),且(是坐標(biāo)原點(diǎn), 是垂足),求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)若、兩點(diǎn)在拋物線上,且滿足,求證:直線必過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩城相距100 km,在兩地之間距A城x km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.
(1)求x的取值范圍;
(2)把月供電總費(fèi)用y表示成x的函數(shù);
(3)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com