7.如果復數(shù)$\frac{2+ai}{1+2i}$的實部與虛部相等,則實數(shù)a等于( 。
A.$\frac{2}{3}$B.6C.-6D.-$\frac{2}{3}$

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義、實部、虛部即可得出.

解答 解:∵復數(shù)$\frac{2+ai}{1+2i}$=$\frac{(2+ai)(1-2i)}{(1+2i)(1-2i)}$=$\frac{2+2a}{5}$+$\frac{(a-4)}{5}$i的實部與虛部相等,
∴$\frac{2+2a}{5}$=$\frac{(a-4)}{5}$,解得a=-6,
故選:C.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義、實部與虛部的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.某學校為了解該校高三年級學生數(shù)學科學習情況,對廣一?荚嚁(shù)學成績進行分析,從中抽取了n 名學生的成績作為樣本進行統(tǒng)計(該校全體學生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.

根據(jù)上級統(tǒng)計劃出預錄分數(shù)線,有下列分數(shù)與可能被錄取院校層次對照表為表( c ).
 分數(shù)[50,85][85,110][110,150]
 可能被錄取院校層次 ? 本科 重本
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學生中隨機抽取3 名學生進行調(diào)研,用ξ表示所抽取的3 名學生中為重本的人數(shù),求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.《九章算術》教會了人們用等差數(shù)列的知識來解決問題,《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾(注:從第2天開始,每天比前一天多織相同量的布),第一天織6尺布,現(xiàn)一月(按30天計)共織540尺布”,則從第2天起每天比前一天多織( 。┏卟迹
A.$\frac{1}{2}$B.$\frac{24}{29}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,在正方體ABCD-A1B1C1D1中,棱長為2,E、F分別是棱DD1、C1D1的中點.
(1)求三棱錐B1-A1BE的體積;
(2)試判斷直線B1F與平面A1BE是否平行,如果平行,請在平面A1BE上作出與B1F平行的直線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x-a|.
(1)若a≤2,解不等式f(x)≥2;
(2)若a>1,?x∈R,f(x)+|x-1|≥1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.數(shù)列{an}中,a2n=a2n-1+(-1)n,a2n+1=a2n+n,a1=1,則a20=46.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.漳州市“網(wǎng)約車”的現(xiàn)行計價標準是:路程在2km以內(nèi)(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.拋物線x2=4y的焦點為F,過點(0,-1)作直線交拋物線于不同兩點A,B,以AF,BF為鄰邊作平行四邊形FARB,求頂點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設m,n是兩條不同的直線,α,β是兩個不同的平面,下列說法正確的是( 。
A.若m∥α,α∩β=n,則 m∥nB.若m∥α,m⊥n,則n⊥α
C.若m⊥α,n⊥α,則m∥nD.若m?α,n?β,α⊥β,則m⊥n

查看答案和解析>>

同步練習冊答案