7.若A、B、C、D、E、F六個(gè)元素排成一列,要求A排在左端,B、C相鄰,則不同的排法有( 。
A.48種B.72種C.96種D.120種

分析 把B,C看做一個(gè)整體,有2種方法;6個(gè)元素變成了5個(gè),先排A,由于要求A排在左端,則A有1種方法,其余的4個(gè)元素任意排,有A44種不同方法.根據(jù)分步計(jì)數(shù)原理求出所有不同的排法種數(shù).

解答 解:由于B,C相鄰,把B,C看做一個(gè)整體,有2種方法.這樣,6個(gè)元素變成了5個(gè).
先排A,由于要求A排在左端,則A有1種方法.
其余的4個(gè)元素任意排,有A44種不同方法,
故不同的排法有 2×A44=48種,
故選:A.

點(diǎn)評 本題主要考查排列、組合以及簡單計(jì)數(shù)原理的應(yīng)用,注意把特殊元素與位置優(yōu)先排列,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=$\frac{π}{3}$,△ADP為等邊三角形.
(1)求證:AD⊥PB;
(2)若AB=2,BP=$\sqrt{6}$,求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在(0,+∞)上的單調(diào)函數(shù)f(x),?x∈(0,+∞),f[f(x)-lnx]=1,則方程f(x)-f′(x)=1的解所在區(qū)間是(  )
A.(0,$\frac{1}{2}}$)B.(${\frac{1}{2}$,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2-3x+b,若f(x)>0的解集為{x|x<1或x>2}.
(1)解不等式$\frac{x-c}{ax-b}$>0(c為常數(shù));
(2)若bx-1>m(ax2-1)在m∈[-2,2]上恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD⊥底面ABCD,G為AD的中點(diǎn).
(1)求證:BG⊥PD;
(2)求 點(diǎn)G到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若點(diǎn)P在線段P1P2的延長線上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,則點(diǎn)P的坐標(biāo)為(-4,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.多項(xiàng)式(x1+x2+…xnk(n,k∈N*)展開式中共有${C}_{k+n-1}^{n-1}$項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)=$\left\{{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{8000}{x}-\frac{57600}{x^2},x>40}\end{array}}\right.$.
(Ⅰ)寫出年利潤f(x)(萬美元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少萬部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經(jīng)過市場調(diào)查,每年投入廣告費(fèi)t百萬元,可增加銷售額約(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百萬元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬元,求每年投放廣告費(fèi)至少多少百萬元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開發(fā),經(jīng)預(yù)測,每投入新產(chǎn)品開發(fā)費(fèi)x百萬元,可增加銷售額約($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百萬元,問如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額-投入)

查看答案和解析>>

同步練習(xí)冊答案