已知P是雙曲線(xiàn)
x2
64
-
y2
36
=1上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),若|PF1|=17,則|PF2|的值為
33
33
分析:利用雙曲線(xiàn)的標(biāo)準(zhǔn)方程及c2=a2+b2即可得到a,b,c.再利用等腰即可得出.
解答:解:由雙曲線(xiàn)方程
x2
64
-
y2
36
=1
知,a=8,b=6,則c=
a2+b2
=10.
∵P是雙曲線(xiàn)上一點(diǎn),
∴||PF1|-|PF2||=2a=16,
又|PF1|=17,
∴|PF2|=1或|PF2|=33.
又|PF2|≥c-a=2,
∴|PF2|=33.
故答案為33
點(diǎn)評(píng):熟練掌握雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x,y)是拋物線(xiàn)y2=-12x的準(zhǔn)線(xiàn)與雙曲線(xiàn)
x2
6
-
y2
2
=1
的兩條漸近線(xiàn)所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點(diǎn),則z=2x-y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)
x2
6
-
y2
2
=1

(1)求以雙曲線(xiàn)的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的橢圓E的方程.
(2)點(diǎn)P在橢圓E上,點(diǎn)C(2,1)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為D,直線(xiàn)CP和DP的斜率都存在且不為0,試問(wèn)直線(xiàn)CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說(shuō)明理由.
(3)平行于CD的直線(xiàn)l交橢圓E于M、N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:過(guò)點(diǎn)M(2,1)的直線(xiàn)與焦點(diǎn)在x軸上的橢圓
x2
6
+
y2
k
=1
恒有公共點(diǎn),q:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線(xiàn),問(wèn):p是q的什么條件?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知p:過(guò)點(diǎn)M(2,1)的直線(xiàn)與焦點(diǎn)在x軸上的橢圓
x2
6
+
y2
k
=1
恒有公共點(diǎn),q:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線(xiàn),問(wèn):p是q的什么條件?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P(x,y)是拋物線(xiàn)y2=-12x的準(zhǔn)線(xiàn)與雙曲線(xiàn)
x2
6
-
y2
2
=1
的兩條漸近線(xiàn)所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點(diǎn),則z=2x-y的最大值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案