已知an=
n0
(2x+1)dx
,數(shù)列{
1
an
}
的前n項和為Sn,數(shù)列{bn}的通項公式為bn=n-8,則bnSn的最小值為______.
an=
n0
(2x+1)dx=(x2+x)
|n0
=n2+n
1
an
=
1
n2+n
=
1
n
-
1
n+1

∴數(shù)列{
1
an
}的前n項和為Sn=
1
a1
+
1
a2
+…+
1
an
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

又bn=n-8,n∈N*,
則bnSn=
n
n+1
×(n-8)=n+1+
9
n+1
-10≥2
9
-10=-4,等號當且僅當n+1=
9
n+1
,即n=2時成立,
故bnSn的最小值為-4.
故答案為:-4.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和記為Sn,已知a1=1,n•an+1=(n+2)Sn(n=1,2,3…).
(1)證明數(shù)列{
Snn
}
是公比為2的等比數(shù)列;
(2)求Sn關(guān)于n的表達式.
(3)請猜測是否存在自然數(shù)N0,對于所有的n>N0有Sn>2007恒成立,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項和Sn=
n2
•a
;
(3)已知有窮等差數(shù)列{cn}的項數(shù)是n0(n0≥3),所有項之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n0和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an滿足an+1=|an-1|(n∈N*),(1)若a1=
54
,求an
(2)是否存在a1,n0(a1∈R,n0∈N*),使當n≥n0(n∈N*)時,an恒為常數(shù).若存在求a1,n0,否則說明理由;
(3)若a1=a∈(k,k+1),(k∈N*),求an的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列bn的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列bn是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,
a
=(Sn,1),
b
=(-1,2an+2n+1),
a
b

(1)證明:數(shù)列{
an
2n
}
為等差數(shù)列;
(2)若bn=
n-2011
n+1
an
,且存在n0,對于任意的k(k∈N+),不等式bkbn0成立,求n0的值.

查看答案和解析>>

同步練習冊答案