在面積為S的△ABC內(nèi)任投一點P,則△PBC的面積大于
S
2
的概率是( 。
分析:首先分析題目求在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積超過
S
2
的概率,即可考慮畫圖求解的方法,然后根據(jù)圖形分析出基本的事件空間與事件的幾何度量是什么.再根據(jù)幾何關系求解出它們的比例即可.
解答:解:記事件A={△PBC的面積超過
S
2
},
基本事件空間是三角形ABC的面積,(如圖)
事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),
因為陰影部分的面積是整個三角形面積的
3
4
,
所以P(A)=1-
陰影部分的面積
三角形ABC的面積
=
1
4

故選D.
點評:本題主要考查了幾何概型.由這個題目可以看出,解決有關幾何概型的問題的關鍵是認清基本事件空間是指面積還是長度或體積,同學們需要注意.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于
S
2
的概率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在面積為S的△ABC內(nèi)部任取一點P,則△PBC的面積大于
3S
4
的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,不正確命題序號是

①圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為相交.
②框圖一般按從上到下、從左到右的方向畫.
③線性回歸直線
y
=
b
x+
a
恒過樣本中心(
.
x
,
.
y
).
④對立事件是互斥事件的特例.
⑤在面積為S的△ABC內(nèi)任取一點P,記A=“△PBC的面積大于
S
3
”,則P(A)=
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在面積為S的△ABC內(nèi)任取一點P,則△PAB的面積大于 
S
2
的概率為
1
4
1
4

查看答案和解析>>

同步練習冊答案