B
分析:先根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于零求定義域,再把復(fù)合函數(shù)分成二次函數(shù)和對(duì)數(shù)函數(shù),分別在定義域內(nèi)判斷兩個(gè)基本初等函數(shù)的單調(diào)性,再由“同增異減”求原函數(shù)的遞增區(qū)間
解答:要使函數(shù)有意義,則6+x-2x
2>0,解得-
<x<2,故函數(shù)的定義域是(-
,2)
令t=-2x
2+x-6則函數(shù)t在(-3,
)上遞增,在[
,2)上遞減,
又因函數(shù)y=
在定義域上單調(diào)遞減,
故由復(fù)合函數(shù)的單調(diào)性知y=
(6+x-2x
2)的單調(diào)遞增區(qū)間是[
,2).
故選B.
點(diǎn)評(píng):本題的考點(diǎn)是復(fù)合函數(shù)的單調(diào)性,對(duì)于對(duì)數(shù)函數(shù)需要先求出定義域,這也是容易漏掉的地方;再把原函數(shù)分成幾個(gè)基本初等函數(shù)分別判斷單調(diào)性,再利用“同增異減”求原函數(shù)的單調(diào)性.