求函數(shù)f(x)=-x2+2ax+1(a∈R)在[0,2]上的最小值為m(a),并求m(a)的最大值.

答案:
解析:

  解:由二次函數(shù)的單調(diào)性可知,f(x)在[0,2]上的最小值只能在端點(diǎn)處取得.

  f(0)=1,f(2)=-4+4a+1=4a-3.

  1°當(dāng)f(0)≤f(2),即1≤4a-3,即a≥1時,m(a)=f(0)=1;

  2°當(dāng)f(0)>f(2),即a<1時,m(a)=f(2)=4a-3.

  綜合1°2°,得

  m(a)=

  當(dāng)a<1時,m(a)是增函數(shù),當(dāng)a≥1時,m(a)是常數(shù)1,所以m(a)的最大值為m(1)=1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:天利38套《2008全國各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044

已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(Ⅰ)當(dāng)a<2時,求F(x)的極小值;

(Ⅱ)若對任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省萊州一中2012屆高三第一次質(zhì)量檢測數(shù)學(xué)文科試題 題型:044

已知函數(shù)

(1)求函數(shù)y=f(x)的圖像在處的切線方程;

(2)求y=f(x)的最大值;

(3)設(shè)實(shí)數(shù)a>0,求函數(shù)F(x)=af(x)在[a,2a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新疆兵團(tuán)二中2012屆高三第六次月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=Asin(ωx+)(x∈R,A>0,ω>0,0<)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且||=2,||=,||=

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)將函數(shù)y=f(x)圖象向右平移1個單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時,求函數(shù)h(x)=f(x)·g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新疆兵團(tuán)二中2012屆高三第六次月考數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且||=2,||=,||=

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)將函數(shù)y=f(x)圖象向右平移1個單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時,求函數(shù)h(x)=f(x)·g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實(shí)數(shù),求函數(shù)f(x)=x2(xa)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案