2.設F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,AF1=3BF1
(Ⅰ)若AB=4,△ABF2的周長為16,求AF2
(Ⅱ)若cos∠AF2B=$\frac{3}{5}$,求橢圓E的離心率.

分析 (I)由AF1=3BF1,AB=4,可得AF1=3,由于△ABF2的周長為16,可得:AB+BF2+AF2=4a=16,解得a.又AF1+AF2=2a,即可得出.
(II)設|F1B|=k(k>0),則|AF1|=3k,|AB|=4k,|AF2|=2a-3k,|BF2|=2a-k,在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2-2|AF2|•|BF2|cos∠AF2B,解得k,進而得出.

解答 解:(I)∵AF1=3BF1,AB=4,∴AF1=3,BF1=1,
∵△ABF2的周長為16,∴AB+BF2+AF2=4a=16,解得a=4.
又AF1+AF2=2×4,
∴AF2=5.
(II)設|F1B|=k(k>0),則|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵cos∠AF2B=$\frac{3}{5}$,
在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2-2|AF2|•|BF2|cos∠AF2B,
∴(4k)2=(2a-3k)2+(2a-k)2-$\frac{6}{5}$(2a-3k)(2a-k),
化簡可得(a+k)(a-3k)=0,而a+k>0,故a=3k,
∴|AF2|=|AF1|=3k,|BF2|=5k,
∴|BF2|2=|AF2|2+|AB|2,
∴AF1⊥AF2
∴△AF1F2是等腰直角三角形,
∴c=$\frac{\sqrt{2}}{2}$a,
∴e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$.

點評 本題考查了橢圓的定義標準方程及其性質、勾股定理的逆定理、余弦定理,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設集合A={-2,-1,0,1,2},集合B={x∈Z|x2-x-2≥0},則A∩∁ZB=( 。
A.{-2,-1,0,1,2}B.[-2,2]C.[0,1]D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.直線l:x-y+2=0和圓C:x2+y2+2x-4y+1=0的位置關系是( 。
A.相離B.相切C.相交過圓心D.相交不過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.命題p:若2x≥2y,則1gx≥1gy;
命題q:若隨機變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤6)=0.72,則P(ξ≤0)=0.28.
下列命題為真命題的是( 。
A.p∧qB.¬p∧qC.p∨¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知集合A={x||x-2|<1},集合B={x|x2-2>0},則A∩B=($\sqrt{2}$,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經過點P(0,1),離心率e=$\frac{\sqrt{2}}{2}$,直線l:y=kx+m交橢圓于不同兩點A,B
(Ⅰ)求橢圓方程;
(Ⅱ)若|PA|=|PB|,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,過左焦點F1的直線與橢圓C相交于A,B兩點,弦AB的中點坐標為(-$\frac{4}{7}$,$\frac{3}{7}$)
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C長軸的左、右兩端點分別為D,E,點P為橢圓上異于D,E的動點,直線l:x=-4與直線PD,PE分別交于M,N兩點,試問△F1MN的外接圓是否恒過x軸上不同于點F1的定點?若經過,求出定點坐標;若不經過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知遞減等差數(shù)列{an}的前三項和為18,前三項的乘積為66,求數(shù)列的通項公式,并判斷-34是該數(shù)列的項嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2).
(1)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求$\overrightarrow{OP}$的坐標.
(2)若$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),且點P在函數(shù)y=x+1的圖象上,試求m-n.

查看答案和解析>>

同步練習冊答案