已知圓C經(jīng)過點A(1,1)和點B(2,-2),且圓心C在直線x-y+1=0上,則圓心C的坐標是(  )
A、(-4,-3)
B、(-3,-2)
C、(4,5)
D、(3,4)
考點:圓的標準方程
專題:直線與圓
分析:設(shè)圓心的坐標為C(a,a+1),再根據(jù)|CA|=|CB|,求得a的值,可得圓心C的坐標.
解答: 解:由圓心C在直線x-y+1=0上,可設(shè)圓心的坐標為C(a,a+1),
再根據(jù)圓C經(jīng)過點A(1,1)和點B(2,-2),可得|CA|=|CB|,
(a-1)2+(a+1-1)2
=
(a-2)2+(a+1+2)2
,求得a=-3,可得圓心C的坐標是(-3,-2),
故選:B.
點評:本題主要考查求圓的標準方程的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
,
b
,滿足|
a
|=3,|
b
|=2,
a
b
=-3,那么
a
b
的夾角θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面程序運行的結(jié)果是( 。
A、5,8B、8,5
C、8,13D、5,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
AB
=(2,4),
AC
=(1,3),則
CB
=(  )
A、(1,1)
B、(-1,-1)
C、(3,7)
D、(-3,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
1
2
an+
1
2n+1
(n≥1),其中a1=
1
4

(Ⅰ)求a1,a2,a3;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,2π),且sinα<0,cosα>0,則角α的取值范圍是(  )
A、(0,
π
2
)
B、(
π
2
,π)
C、(π,
2
)
D、(
2
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y∈R且4x2+y2-2xy=2,則2x+y的最大值為( 。
A、2
B、
2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在右側(cè)的表格中,各數(shù)均為正數(shù),且每行中的各數(shù)從左到右成等差數(shù)列,每列中的各數(shù)從上到下成等比數(shù)列,那么x+y+z=
 
2x3
ya
3
2
1
2
5
8
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足z=(z-1)•i,則復(fù)數(shù)z的模為(  )
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

同步練習(xí)冊答案