【題目】非空集合A中的元素個數(shù)用(A)表示,定義(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,則a的所有可能值為(
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}

【答案】C
【解析】解:(1)若a=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,即B={﹣1,3},
∴集合B有2個元素,則(A﹣B)=0,符合條件(A﹣B)≤1,(2)a>0時,得到x2﹣2x﹣3=±a,即x2﹣2x﹣3﹣a=0或x2﹣2x﹣3+a=0;
對于方程x2﹣2x﹣3﹣a=0,△=4+4(3+a)>0,該方程有兩個不同實數(shù)根,
則(A﹣B)=0,符合條件(A﹣B)≤1,
對于方程x2﹣2x﹣3+a=0,△=4+4(3﹣a)≥0,
0<a≤4時,該方程有兩個不同實數(shù)根,符合條件(A﹣B)≤1,
綜上所述a的范圍為0≤a≤4,
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=a (0<a<1)的單調(diào)遞增區(qū)間是(
A.(﹣∞,
B.( ,+∞)
C.(﹣∞,﹣
D.(﹣ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴(yán)重.市環(huán)保研究所對近期每天的空氣污染情況進(jìn)行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關(guān)系為f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a= ,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補充原材料多少袋?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={y|2<y<3},B={x|( <22x+1}.
(1)求A∩B;
(2)求C={x|x∈B且xA}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當(dāng)租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域是(
A.(0,2)
B.[0,2]
C.(0,1)∪(1,2)
D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求平面AMC與平面BMC所成二面角的大。

查看答案和解析>>

同步練習(xí)冊答案