若函數(shù)y=x+
a
x
,a∈R且在[2,+∞)上為增函數(shù),求a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:求y′,找出函數(shù)y=x+
a
x
的單調(diào)增區(qū)間,并使該函數(shù)在[2,+∞)上單調(diào)遞增,從而求得a的取值范圍.
解答: 解:y′=1-
a
x2
=
x2-a
x2
;
若a≤0,則y′>0,∴函數(shù)y=x+
a
x
在(-∞,0)和(0,+∞)上為增函數(shù);
若a>0,則函數(shù)y=x+
a
x
在(-∞,-
a
)和[
a
,+∞)上為增函數(shù),∴
a
≤2
,∴0<a≤4.
∴a的取值范圍是:(-∞,4].
點(diǎn)評:考查利用求導(dǎo)數(shù),判斷導(dǎo)數(shù)符號來判斷函數(shù)單調(diào)性的方法,這里注意對于a的討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A、12
B、16
C、24+4
5
D、8+
8
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)對高二甲、乙兩個同類班級進(jìn)行加強(qiáng)語文閱讀理解訓(xùn)練對提高數(shù)學(xué)應(yīng)用題得分率作用的試驗(yàn),其中甲班為實(shí)驗(yàn)班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗(yàn)前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用試題測試的平均成績(均取整數(shù))如表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人數(shù))36111812
乙班(人數(shù))39131510
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分析估計兩個班級的優(yōu)秀率;
(2)由以上統(tǒng)計列出2×2列聯(lián)表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)P作斜率存在且不為0的兩條不同的直線l1,l2,使得l1,l2與橢圓都相切,試判斷l(xiāng)1與l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
6
3
,F(xiàn)為橢圓在x軸正半軸上的焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且
MF
FN
(λ>0),定點(diǎn)A(-4,0).
(Ⅰ)求證:當(dāng)λ=1時
MN
AF
;
(Ⅱ)若當(dāng)λ=1時有
AM
AN
=
106
3
,求橢圓C的方程;
(Ⅲ)在(Ⅱ)的橢圓中,當(dāng)M、N兩點(diǎn)在橢圓C上運(yùn)動時,試判斷
AM
AN
×tan∠MAN是否有最大值,若存在,求出最大值,并求出這時M、N兩點(diǎn)所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線 l:(1+
3
λ)x-(3-2λ)y-(
3
+3λ)=0(λ∈R),一定經(jīng)過橢圓C(中心在原點(diǎn),焦點(diǎn)在x軸上)的焦點(diǎn)F,且橢圓C上的點(diǎn)到焦點(diǎn)F的最大距離為2+
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為k(k≠0)的直線n交橢圓C與A、B兩點(diǎn),且kOA、k、kOB成等差數(shù)列,點(diǎn)M(1,1),求S△ABM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知角α的終邊在第二象限,且與單位圓交于點(diǎn)P(m,
15
4
).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求
sin(α+
π
4
)
sin(π+2α)-sin(
2
-2α)+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e為
3
5
,且橢圓C的一個焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(2,0),點(diǎn)Q是橢圓上一點(diǎn),當(dāng)|MQ|最小時,試求點(diǎn)Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長軸(含端點(diǎn))上的一個動點(diǎn),過P點(diǎn)斜率為k的直線l交橢圓與A,B兩點(diǎn),若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于?x∈R使得丨x-2a丨+x>3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案