在△ABC中,角A、B、C所對的邊分別為a、b、c,若(2b-c)cosA=acosC,則角A=________.

60°
分析:利用正弦定理化簡已知的等式,再利用兩角和的正弦函數(shù)公式及誘導(dǎo)公式化簡,根據(jù)sinB不為0,得到cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
解答:將(2b-c)cosA=acosC代入正弦定理得:
(2sinB-sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA=,又A∈(0,180°),
則A的度數(shù)為60°.
故答案為:60°
點評:此題考查了正弦定理,兩角和的正弦函數(shù)公式及誘導(dǎo)公式,熟練掌握定理及公式是解本題的關(guān)鍵,學(xué)生在求值時注意運用三角形內(nèi)角和定理這個隱含條件,同時注意角度的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案