已知拋物線y2=2px(p>0),F(xiàn)為其焦點,l為其準線,過F任作一條直線交拋物線于A、B兩點,A'、B'分別為A、B在l上的射影,M為A'B'的中點,給出下列命題:
①A'F⊥B'F;
②AM⊥BM;
③A'F∥BM;
④A'F與AM的交點在y軸上;
⑤AB'與A'B交于原點.
其中真命題的個數(shù)為( )
A.2個
B.3個
C.4個
D.5個
【答案】
分析:①由于A,B在拋物線上,根據(jù)拋物線的定義可知A'F=AF,B'F=BF,從而由相等的角,由此可判斷A'F⊥B'F;
②取AB中點C,利用中位線即拋物線的定義可得CM=
,從而AM⊥BM;
③由②知,AM平分∠A′AF,從而可得A′F⊥AM,根據(jù)AM⊥BM,利用垂直于同一直線的兩條直線平行,可得結(jié)論;
④取AB⊥x軸,則四邊形AFMA'為矩形,則可得結(jié)論;
⑤取AB⊥x軸,則四邊形ABB'A'為矩形,則可得結(jié)論.
解答:解:①由于A,B在拋物線上,根據(jù)拋物線的定義可知A'F=AF,B'F=BF,因為A′、B′分別為A、B在l上的射影,所以A'F⊥B'F;
②取AB中點C,則CM=
,∴AM⊥BM;
③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;
④取AB⊥x軸,則四邊形AFMA′為矩形,則可知A'F與AM的交點在y軸上;
⑤取AB⊥x軸,則四邊形ABB'A'為矩形,則可知AB'與A'B交于原點
故選D.
點評:本題以拋物線為載體,考查拋物線的性質(zhì),解題的關(guān)鍵是合理運用拋物線的定義.