分析 根據(jù)f(x)、g(x)的奇偶性,得出f(-x)+g(-x)=-f(x)+g(x)=x2-ax+2a-1②,又f(x)+g(x)=x2+ax+2a-1①;由①、②求得f(x)、g(x),結合f(1)=2,可得結論.
解答 解:∵f(x)為奇函數(shù),g(x)為偶函數(shù),
∴f(-x)=-f(x),g(-x)=g(x),
又f(x)+g(x)=x2+ax+2a-1①,
∴f(-x)+g(-x)=(-x)2+a(-x)+2a-1,
即-f(x)+g(x)=x2-ax+2a-1②;
由①、②解得f(x)=ax,g(x)=x2+2ax-1.
∵f(1)=2,∴a=2,
∴g(t)=t2+4t-1.
故答案為t2+4t-1.
點評 本題考查了函數(shù)的奇偶性的應用問題,解題時應根據(jù)題意,結合奇偶性建立二元一次方程組,從而求出答案來,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若l∥α,α∩β=m,則l∥m | B. | 若l⊥α,m⊥α,則l∥m | ||
C. | 若l∥α,m∥α,則l∥m | D. | 若l∥α,m⊥l,則m⊥α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1<2,2<x2<5 | B. | x1>2,x2>5 | C. | x1<2,x2>5 | D. | 2<x1<5,x2>5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | 以上都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com