已知cos(α+β)+cos(α-β)=
1
3
,則cosαcosβ的值為
 
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用兩角和差的余弦公式花簡(jiǎn)求得cosαcosβ的值.
解答: 解:∵cos(α+β)+cos(α-β)=
1
3
,∴cosαcosβ-sinαsinβ+cosαcosβ+sinαsinβ=
1
3
,
由此求得cosαcosβ=
1
6
,
故答案為:
1
6
點(diǎn)評(píng):本題主要考查兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知lgx=a,lgy=b,求lg
x
-lg(
y
10
2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若區(qū)間D內(nèi)存在實(shí)數(shù)x使得f(x+1)>f(x),則y=f(x)在D上是增函數(shù);
②y=-
1
x
在定義域內(nèi)是增函數(shù);
③函數(shù)f(x)=
1-x2
|x+1|-1
圖象關(guān)于原點(diǎn)對(duì)稱;
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R); 
⑤函數(shù)y=f(x+2)圖象與函數(shù)y=f(2-x)圖象關(guān)于直線x=2對(duì)稱;
其中正確命題的個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰直角三角形的兩個(gè)銳角頂點(diǎn)為A(2,0),B(0,4),則直角頂點(diǎn)C的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a•2x+a-2
2x+1
,x∈R為奇函數(shù).求使f(x)>
1
2
的x值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實(shí)數(shù)a使得g(x)=ln(1-
2a
x+2
)為奇函數(shù)同時(shí)使得h(x)=x(
1
a
+
1
ax-1
)為偶函數(shù),若存在,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A、B為銳角且B<A,sinA=
5
5
,sin2B=
3
5

(1)求角C的值;
(2)求證:5cosAcos(A+3B)=2sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+k•x2+3x-2k,g(x)=(3-k2)•x
(1)當(dāng)x∈(1,+∞)時(shí),討論函數(shù)f(x)是否存在極值;
(2)若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
ex-1
+tanx,則f(-2)+f(-1)+f(1)+f(2)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案