數(shù)列-,,-,,…的一個通項公式可以是   .

 

an=(-1)n

【解析】正負相間使用(-1)n,觀察可知第n項的分母是2n,分子比分母的值少1,an=(-1)n.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十二第三章第六節(jié)練習卷(解析版) 題型:選擇題

化簡=(  )

(A)-2   (B)-   (C)-1   (D)1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十七第四章第三節(jié)練習卷(解析版) 題型:選擇題

已知向量a,b滿足|a|=|b|=2,a·b=0,若向量ca-b共線,|a+c|的最小值為(  )

(A)1(B)(C)(D)2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十一第三章第五節(jié)練習卷(解析版) 題型:選擇題

在△ABC,tanA+tanB+=tanA·tanB,C等于(  )

(A)   (B)   (C)   (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十第五章第一節(jié)練習卷(解析版) 題型:解答題

已知二次函數(shù)f(x)=px2+qx(p0),其導函數(shù)為f'(x)=6x-2,數(shù)列{an}的前n項和為Sn,(n,Sn)(nN*)均在函數(shù)y=f(x)的圖象上.

(1)求數(shù)列{an}的通項公式.

(2)cn=(an+2),2b1+22b2+23b3++2nbn=cn,求數(shù)列{bn}的通項公式.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十第五章第一節(jié)練習卷(解析版) 題型:選擇題

數(shù)列{an}的前n項和為Sn=4n2-n+2,則該數(shù)列的通項公式為(  )

(A)an=8n-5(nN*)

(B)an=

(C)an=8n+5(n2)

(D)an=8n+5(n1)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十四第五章第五節(jié)練習卷(解析版) 題型:解答題

已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足:a3·a4=117,a2+a5=22.

(1)求數(shù)列{an}的通項公式an.

(2)若數(shù)列{bn}是等差數(shù)列,bn=,求非零常數(shù)c.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十六第六章第二節(jié)練習卷(解析版) 題型:填空題

若關于x的不等式ax2+bx+a2-10的解集分別為[-1,+),則實數(shù)a,b的值分別為    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十五第六章第一節(jié)練習卷(解析版) 題型:選擇題

a,b是任意實數(shù),a>b,(  )

(A)a2>b2 (B)<1

(C)lg(a-b)>0 (D)()a<()b

 

查看答案和解析>>

同步練習冊答案