△ABC中,sinA=2sinCcosB,那么此三角形是


  1. A.
    等邊三角形
  2. B.
    銳角三角形
  3. C.
    等腰三角形
  4. D.
    直角三角形
C
分析:由三角形的內角和及誘導公式得到sinA=sin(B+C),右邊利用兩角和與差的正弦函數(shù)公式化簡,再根據(jù)已知的等式,合并化簡后,再利用兩角和與差的正弦函數(shù)公式得到sin(B-C)=0,由B與C都為三角形的內角,可得B=C,進而得到三角形為等腰三角形.
解答:∵A+B+C=π,即A=π-(B+C),∴sinA=sin(B+C)=sinBcosC+cosBsinC.
又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC.
變形得:sinBcosC-cosBsinC=0,即sin(B-C)=0.
又B和C都為三角形內角,∴B=C,則三角形為等腰三角形.
故選C.
點評:此題考查了三角形形狀的判斷,涉及的知識有誘導公式,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關鍵,同時注意三角形內角和定理及三角形內角的范圍的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在斜△ABC中,sinA=-cosBcosC且tanBtanC=1-
3
,則∠A的值為( 。
A、
π
6
B、
π
3
C、
2 π
3
D、
5 π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•醴陵市模擬)在△ABC中,sinA>sinB是A>B的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的序號為
①③④⑤
①③④⑤
(你認為正確的都寫出來)學
①y=sinxcosx的周期為π,最大值為
1
2
; ②若x是第一象限的角,則y=sinx是增函數(shù);③在△ABC中若sinA=sinB則A=B;   ④α,β∈(0,
π
2
)
cosα<sinβ則α+β>
π
2
 ⑤f(x)=sinx+cosx既不是奇函數(shù),也不是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sinA:sinB:sinC=2:3:x,且△ABC為銳角三角形,則x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡:sin50°(1+
3
tan10°)
;
(2)已知△ABC中,sinA+cosA=
1
3
,求cos2A的值.

查看答案和解析>>

同步練習冊答案