已知△ABC中,,ab,,且有tanA·tanB6.試求a、b及此三角形的面積.

答案:略
解析:

tanAtanB

=tan(AB)(1tanA·tanB)

=tanC(1tanA·tanB)

=5,

又∵tanA·tanB=6ab,

tanAtanB

聯(lián)立

tanA=3,tanB=2

,,

,

由正弦定理,得

    


提示:

由已知可求出tanAtanB,這樣便可求得tanAtanB的值,只要求出sinAsinB的值,利用正弦定理,可求得ab


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上有高,以下結(jié)論:①
AH
•(
AC
-
AB
)=0
;②
AB
BC
<0?△ABC
為銳角三角形③
AC
AH
|
AH
|
=csinB④
BC
•(
AC
-
AB
)
=b2+c2-2bccosA,其中正確的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C的對邊分別為a、b、c,且
tanA-tanB
tanA+tanB
=
b+c
c

(1)求角A;
(2)若
BA
AC
=6
,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C所對邊長分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
1
4
為偶函數(shù),且f(cos
B
2
)=0

(1)求角B的大小;
(2)若△ABC的面積為
3
4
,其外接圓的半徑為
2
3
3
,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C的對邊分別是a、b、c,且滿足b+c=
3
a
,設(shè)
m
=[cos(
π
2
+A),-1],
n
=(cosA-
5
4
,-sinA),
m
n
,試求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)(1)已知△ABC中,角A,B,C的對邊分別是a,b,c,
AB
AC
=3,a=2
5
,b+c=6,求cosA.
(2)設(shè)f(x)=-2cos2
π
8
x+sin(
π
4
x-
π
6
)+1,當(dāng)x∈[-
2
3
,0]時,求y=f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案