(10分) 已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,(n∈N*).
(1)求a1和an;
(2)記bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.
(1) an=-2n+11(n∈N*).(2) Tn=
【解析】本題考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的應(yīng)用,考查轉(zhuǎn)化思想與計(jì)算能力
由Sn=10n-n2知Sn是關(guān)于n的無(wú)常數(shù)項(xiàng)的二次函數(shù)(n∈N*),可知{an}為等差數(shù)列,求出an,然后再判斷哪些項(xiàng)為正,哪些項(xiàng)為負(fù),然后求解Tn.
(1)∵Sn=10n-n2,∴a1=S1=10-1=9.
∵Sn=10n-n2,當(dāng)n≥2,n∈N*時(shí),
Sn-1=10(n-1)-(n-1)2=10n-n2+2n-11,
∴an=Sn-Sn-1=(10n-n2)-(10n-n2+2n-11)
=-2n+11.
又n=1時(shí),a1=9=-2×1+11,符合上式.
則數(shù)列{an}的通項(xiàng)公式為an=-2n+11(n∈N*).
(2)∵an=-2n+11,∴bn=|an|=
設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,
n≤5時(shí),Tn==10n-n2;
n>5時(shí)Tn=T5+=25+=25+(n-5)2=n2-10n+50,
∴數(shù)列{bn}的前n項(xiàng)和Tn=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013屆北京市高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)
已知數(shù)列,其前項(xiàng)和為.
(Ⅰ)求,;
(Ⅱ)求數(shù)列的通項(xiàng)公式,并證明數(shù)列是等差數(shù)列;
(Ⅲ)如果數(shù)列滿足,請(qǐng)證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年安徽省合肥市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(滿分10分)已知數(shù)列,,若以為系數(shù)的二次方程都有根,且滿足。
(1)求數(shù)列通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年安徽省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(滿分10分)已知數(shù)列,,若以為系數(shù)的二次方程都有根,且滿足。
(1)求數(shù)列通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年安徽省合肥市八中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(滿分10分)已知數(shù)列,,若以為系數(shù)的二次方程都有根,且滿足。
(1)求數(shù)列通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com