已知α,β∈(-),且tanα,tanβ是方程x2+3x+4=0的兩個根,則α+β=   
【答案】分析:由tanα,tanβ是方程x2+3x+4=0的兩個根,根據(jù)韋達(dá)定理表示出兩根之和與兩根之積,表示出所求角度的正切值,利用兩角和的正切函數(shù)公式化簡后,將表示出的兩根之和與兩根之積代入即可求出tan(α+β)的值,然后根據(jù)兩根之和小于0,兩根之積大于0,得到兩根都為負(fù)數(shù),根據(jù)α與β的范圍,求出α+β的范圍,再根據(jù)特殊角的三角函數(shù)值,由求出的tan(α+β)的值即可求出α+β的值.
解答:解:依題意得tanα+tanβ=-3<0,tanα•tanβ=4>0,
∴tan(α+β)===
易知tanα<0,tanβ<0,又α,β∈(-),
∴α∈(-,0),β∈(-,0),
∴α+β∈(-π,0),
∴α+β=-
故答案為:-
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用韋達(dá)定理及兩角和的正切函數(shù)公式化簡求值,是一道中檔題.本題的關(guān)鍵是找出α+β的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,點(diǎn)P為對角線AC上一點(diǎn),則(
.
AP
+
.
BD
)•(
.
PB
+
.
PD
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)為下崗人員免費(fèi)提供財會和計算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項培訓(xùn)、參加兩項培訓(xùn)或不參加培訓(xùn),已知參加過財會培訓(xùn)的有60%,參加過計算機(jī)培訓(xùn)的有75%.假設(shè)每個人對培訓(xùn)項目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響.
(Ⅰ)任選1名下崗人員,求該人參加過培訓(xùn)的概率;
(Ⅱ)任選3名下崗人員,記ξ為3人中參加過培訓(xùn)的人數(shù),求ξ的分布列和期望.
 ξ  0  1  2  3
 P  0.021  0.027  0.243  0.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=
2
5
,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點(diǎn)O到山腳修路的造價為a萬元/km,原有公路改建費(fèi)用為
a
2
萬元/km、當(dāng)山坡上公路長度為lkm(1≤l≤2)時,其造價為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=
3
(km)

(Ⅰ)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價最。
(Ⅱ)對于(I)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價最小.
(Ⅲ)在AB上是否存在兩個不同的點(diǎn)D′,E′,使沿折線PD′E′O修建公路的總造價小于(Ⅱ)中得到的最小總造價,證明你的結(jié)論、
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2-x-1在(-∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A、(-∞,-
3
]∪[
3
,+∞)
B、[-
3
,
3
]
C、(-∞,-
3
)∪(
3
,+∞)
D、(-
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),則實數(shù)a的取值范圍是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案