18.如圖,在平面直角坐標(biāo)系中,分別在x軸與直線$y=\frac{{\sqrt{3}}}{3}({x+1})$上從左向右依次取點(diǎn)Ak、Bk,k=1,2,…,其中A1是坐標(biāo)原點(diǎn),使△AkBkAk+1都是等邊三角形,則△A10B10A11的邊長是512.

分析 設(shè)直線與x軸交點(diǎn)坐標(biāo)為P,由直線$y=\frac{{\sqrt{3}}}{3}({x+1})$的傾斜角為300,又△A1B1A2是等邊三角形$\sqrt{3}$,求出△A2B2A3、…找出規(guī)律,就可以求出△A10B10A11的邊長.

解答 解:∵直線$y=\frac{{\sqrt{3}}}{3}({x+1})$的傾斜角為300,且直線與x軸交點(diǎn)坐標(biāo)為P(-1,0),
又∵△A1B1A2是等邊三角形,∴∠B1A1A2=600,B1A1=1,PA2=2,
∴△A2B2A3的邊長為PA2=2,同理 B2A2=PA3=4,…以此類推
B10A10=PA10=512,∴△A10B10A11的邊長是512,
故答案為:512.

點(diǎn)評(píng) 本題考查了直線的傾斜角,等邊三角形的性質(zhì),及歸納推理的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式|x-m|<1成立的充分不必要條件是1<x<2,則實(shí)數(shù)m的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在考試測(cè)評(píng)中,常用難度曲線圖來檢測(cè)題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對(duì)率也應(yīng)較高,如果是某次數(shù)學(xué)測(cè)試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是( 。
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.關(guān)于函數(shù)f(x)=x3-3x2+6x的單調(diào)性是( 。
A.增函數(shù)B.先增后減C.先減后增D.減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,則$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若存在常數(shù)k(k∈N*,k≥2)、q、d,使得無窮數(shù)列{an}滿足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$則稱數(shù)列{an}為“段比差數(shù)列”,其中常數(shù)k、q、d分別叫做段長、段比、段差.設(shè)數(shù)列{bn}為“段比差數(shù)列”.
(1)若{bn}的首項(xiàng)、段長、段比、段差分別為1、3、q、3.
①當(dāng)q=0時(shí),求b2016
②當(dāng)q=1時(shí),設(shè){bn}的前3n項(xiàng)和為S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$對(duì)n∈N*恒成立,求實(shí)數(shù)λ的取值范圍;
(2)設(shè){bn}為等比數(shù)列,且首項(xiàng)為b,試寫出所有滿足條件的{bn},并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知△ABC的面積為$\sqrt{3}$,且∠C=30°,BC=2$\sqrt{3}$,則AB等于( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,1},B={1,-1,3},那么A∩B=等于( 。
A.{-1}B.{1}C.{-1,1}D.{1,-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)實(shí)數(shù)a,b滿足約束條件$\left\{\begin{array}{l}a+b-2≥0\\ b-a-1≤0\\ a≤1\end{array}\right.$,則$\frac{b+2}{a+2}$的取值范圍為$[1,\frac{7}{5}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案