A. | (0,4) | B. | [0,4] | C. | (0,4] | D. | [0,4) |
分析 設(shè)x1∈{x|f(x)=0}={x|f(f(x))=0},從而可推出f(0)=0,從而化簡f(x)=bx2+cx;從而可得(bx2+cx)(b2x2+bcx+c)=0與bx2+cx=0的根相同,從而解得.
解答 解:設(shè)x1∈{x|f(x)=0}={x|f(f(x))=0},
則f(x1)=0,且f(f(x1))=0,
∴f(0)=0,即a($\frac{1}{3}$)x=0
∴a=0;
故f(x)=bx2+cx;
由f(x)=0得,x=0或x=-$\frac{c}$;
f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,
整理得:(bx2+cx)(b2x2+bcx+c)=0,
當(dāng)c=0時,顯然成立;
當(dāng)c≠0時,方程b2x2+bcx+c=0無根,
故△=(bc)2-4b2c<0,
解得,0<c<4.
綜上所述,0≤c<4,
故答案選:A.
點評 本題考查了集合的相等與函數(shù)的關(guān)系應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | $\frac{1}{3}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的最小值為e | B. | f(x)的最大值為e | C. | f(x)的最小值為$\frac{1}{e}$ | D. | f(x)的最大值為$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com