已知函數(shù)f(x)是周期為4的偶函數(shù),當x∈[0,2]時,f(x)=-x+1,則不等式x•f(x)>0在x∈(-3,1)上的解集為


  1. A.
    (-1,1)
  2. B.
    (0,1)
  3. C.
    (-3,-1)∪(0,1)
  4. D.
    (-1,0)∪(0,1)
C
分析:由函數(shù)的性質(zhì)可得函數(shù)的圖象,化不等式為x與f(x)同號,數(shù)形結(jié)合可得答案.
解答:依題意:函數(shù)f(x)是周期為4的偶函數(shù),當x∈[0,2]時,f(x)=-x+1,
由此可作出函數(shù)f(x)在x∈(-3,1)的圖象:

不等式x•f(x)>0在x∈(-3,1)上的解集即圖象上x與f(x)同號的區(qū)域,
由圖可知當x∈(-3,-1)∪(0,1)時符合題意,
故選C
點評:本題考查函數(shù)的周期性和單調(diào)性,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設(shè)弧   的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學文科試題 題型:013

已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設(shè)弧的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:

①函數(shù)y=f(x)的定義域和值域都是[0,π];

②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);

③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);

④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個數(shù)是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設(shè)弧  的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省武漢市武昌區(qū)高三五月調(diào)考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設(shè)弧   的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]是單調(diào)遞增函數(shù).
以上結(jié)論的正確個數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案