下列四個函數(shù)中,既是偶函數(shù),又在(1,+∞)上遞增的是( 。
A、f(x)=
x
B、f(x)=
|x|
x2
C、f(x)=x3+x
D、f(x)=2x+2-x
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性的大小和性質(zhì)即可得到結(jié)論.
解答: 解:A.函數(shù)的定義域為[0,+∞),則函數(shù)為非奇非偶函數(shù),
B.函數(shù)的定義域為(-∞,0)∪(0,+∞),則f(-x)=
|x|
x2
=f(x),為偶函數(shù),當(dāng)x>1時,f(x)=
1
x
,此時函數(shù)為減函數(shù).
C.函數(shù)f(x)為奇函數(shù),在(1,+∞)為增函數(shù).
D.f(-x)=2x+2-x=f(x)為偶函數(shù),函數(shù)的導(dǎo)數(shù)為f′(x)=2xln2-2-xln2=ln2(2x-2-x),
當(dāng)x>1時,f′(x)>0,則函數(shù)f(x)為增函數(shù),
故選:D
點(diǎn)評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握函數(shù)的基本性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an]的公差為d,點(diǎn)(an,bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=2,點(diǎn)(a8,4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn;
(2)若數(shù)列{an}的公差不為0,且a1=1,a2,a4,a8成等比數(shù)列,求數(shù)列{
an
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐的全面積為15πcm2,側(cè)面展開圖的中心角為60°,則圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m+1)x2+4mx+2m-1.
(1)若函數(shù)的一個零點(diǎn)在原點(diǎn),①求m的值;②求當(dāng)x∈[-1,2]時f(x)的值域;
(2)若0<m<
1
2
,求證f(x)在(0,1)上有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|+|x-a|
(1)若a=1,解不等式f(x)≥2;
(2)若a>1,?x∈R,f(x)+|x-1|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|a-2|<|4-a2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-2x-3|,則函數(shù)f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某集合A={x|1<x<2},B={x|x<a},滿足A?B,則實數(shù)a的取值范圍是( 。
A、{a|a≥2}
B、{a|a>2}
C、{a|a≥1}
D、{a|a≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x-1)=x2-2x-4,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案