已知函數(shù)
(1)當(dāng)時,求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).
(1)1   (2)

試題分析:(1)先求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求出函數(shù)f(x)的單調(diào)區(qū)間,即可可求最小值;(2)先求導(dǎo),由有正數(shù)解得到含有參數(shù)a的關(guān)于x的不等式的解,在分類求出滿足條件的a,最后求并集即可.(3)用數(shù)學(xué)歸納法證明.
試題解析:(1),定義域為
 
上是增函數(shù).
.                               4分
(2)因為
因為若存在單調(diào)遞減區(qū)間,所以有正數(shù)解.
的解 
當(dāng)時,明顯成立 .
②當(dāng)時,開口向下的拋物線,總有的解;
③當(dāng)時,開口向上的拋物線,
即方程有正根.
因為
所以方程有兩正根.
當(dāng)時,;
,解得
綜合①②③知:
或: 
的解 
即 
即  
,
(3)(法一)根據(jù)(Ⅰ)的結(jié)論,當(dāng)時,,即
,則有,   
,
.                                 14分
(法二)當(dāng)時,
,即時命題成立.
設(shè)當(dāng)時,命題成立,即
時,
根據(jù)(Ⅰ)的結(jié)論,當(dāng)時,,即
,則有,
則有,即時命題也成立.
因此,由數(shù)學(xué)歸納法可知不等式成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的一個極值點.
(Ⅰ) 求的值;  
(Ⅱ) 求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè),試問過點可作多少條直線與曲線相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上的最大值與最小值分別為,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在上的函數(shù)滿足的導(dǎo)函數(shù),且導(dǎo)函數(shù)的圖象如右圖所示.則不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在上的函數(shù)滿足,且的導(dǎo)函數(shù)上恒有,則不等式的解集為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),對任意,不等式恒成立,則正數(shù)的取值范圍是       

查看答案和解析>>

同步練習(xí)冊答案