分析 (1)由已知結(jié)合正弦定理可得sinC=$\sqrt{3}$sinAsinC-sinCcosA,又sinC≠0,利用三角函數(shù)恒等變換的應(yīng)用可得sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,結(jié)合A的范圍,即可得解A的值.
(2)由已知利用三角形面積公式可求bc=1,利用余弦定理可求得b+c=2,聯(lián)立方程即可得解b,c的值.
解答 (本題滿分為12分)
解:(1)由已知結(jié)合正弦定理可得sinC=$\sqrt{3}$sinAsinC-sinCcosA,…(2分)
∵sinC≠0,
∴1=$\sqrt{3}$sinA-cosA=2sin(A-$\frac{π}{6}$),即sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,…(4分)
又∵A∈(0,π),
∴A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴A-$\frac{π}{6}$=$\frac{π}{6}$,
∴A=$\frac{π}{3}$,…(6分)
(2)S=$\frac{1}{2}$bcsinA,即$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$bc•$\frac{\sqrt{3}}{2}$,
∴bc=1,①…(7分)
又∵a2=b2+c2-2bccosA=(b+c)2-2bc-2bccos$\frac{π}{3}$,
即1=(b+c)2-3,且b,c為正數(shù),
∴b+c=2,②…(10分)
由①②兩式解得b=c=1.…(12分)
點(diǎn)評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\frac{{\sqrt{3}}}{4}x$ | B. | $y=±\frac{{\sqrt{2}}}{4}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\frac{1}{3}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)>e2f(0),f(2016)>e2016f(0) | B. | f(2)<e2f(0),f(2016)>e2016f(0) | ||
C. | f(2)<e2f(0),f(2016)<e2016f(0) | D. | f(2)>e2f(0),f(2016)<e2016f(0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com