等比數(shù)列{an}為遞增數(shù)列,且a4=
2
3
,a3+a5=
20
9
,數(shù)列bn=log3
an
2
(n∈N*).
(1)求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)Tn=b1+b2+b22+…+b2n-1,求使Tn>0成立的最小值n.
分析:(1)根據(jù){an}是等比數(shù)列,a4=
2
3
a3+a5=
20
9
,建立方程組,從而可求數(shù)列的公比,由此可得數(shù)列的通項(xiàng),進(jìn)而可求數(shù)列的和;
(2)先求Tn,可得2n>5n+1,從而可求使Tn>0成立的最小值n.
解答:解:(1)∵{an}是等比數(shù)列,a4=
2
3
a3+a5=
20
9
,
a1q3=
2
3
a1q2+a1q4=
20
9
,兩式相除得:
q
1+q2
=
3
10

∴q=3或q=
1
3
,
∵{an}為遞增數(shù)列,∴q=3,a1=
2
81
-------(4分)
an=a1qn-1=
2
81
3n-1=2•3n-5
--------(6分)
bn=log3
an
2
=n-5
,數(shù)列{bn}的前n項(xiàng)和Sn=
n(-4+n-5)
2
=
1
2
(n2-9n)
---(8分)
(2)Tn=b1+b2+b22+…b2n-1=(1-5)+(2-5)+(22-5)+…(2n-1-5)=
1-2n
1-2
-5n>0

即:2n>5n+1-------(12分)
∵24<5×4+1,25>5×4+1
∴nmin=5--------(14分)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查解不等式,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn關(guān)于n的表達(dá)式.
(Ⅲ)記bn=log(1+2an)Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的遞推公式為
a1=2
an+1=3an+1
bn=an+
1
2
(n∈N*),
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(Ⅱ)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式;
(Ⅲ)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案