已知等差數(shù)列{
an}的首項(xiàng)
a1=1,公差
d>0,且第二項(xiàng),第五項(xiàng),第十四項(xiàng)分別是等比數(shù)列{
bn}的第二項(xiàng),第三項(xiàng),第四項(xiàng).
(1)求數(shù)列{
an}與{
bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
cn}對(duì)任意自然數(shù)
n,均有
,
求
c1+
c2+
c3+……+
c2006值.
(1)
an=2
n-1,
bn=3
n-1;
(2)
(1)由題意得(
a1+
d)(
a1+13
d)=(
a1+4
d)
2(
d>0) 解得
d=2,∴
an=2
n-1,
bn=3
n-1.
(2)當(dāng)
n=1時(shí),
c1="3" 當(dāng)
n≥2時(shí),
,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)數(shù)列{a
n}的首項(xiàng)a
1∈(0,1),
,n=2,3,4,….(Ⅰ)求{a
n}的通項(xiàng)公式;(Ⅱ)設(shè)
,證明b
n<b
n+1,其中n為正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
等差數(shù)列{
an}中有兩項(xiàng)
am和
ak滿(mǎn)足
am=
,
ak=
,則該數(shù)列前
mk項(xiàng)之和是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分14分)已知曲線(xiàn)
:
(其中
為自然對(duì)數(shù)的底數(shù))在點(diǎn)
處的切線(xiàn)與
軸交于點(diǎn)
,過(guò)點(diǎn)
作
軸的垂線(xiàn)交曲線(xiàn)
于點(diǎn)
,曲線(xiàn)
在點(diǎn)
處的切線(xiàn)與
軸交于點(diǎn)
,過(guò)點(diǎn)
作
軸的垂線(xiàn)交曲線(xiàn)
于點(diǎn)
,……,依次下去得到一系列點(diǎn)
、
、……、
,設(shè)點(diǎn)
的坐標(biāo)為
(
).(Ⅰ)分別求
與
的表達(dá)式;(Ⅱ)設(shè)
O為坐標(biāo)原點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若
、
分別是
的等差中項(xiàng)和等比中項(xiàng),則
的值為:( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在數(shù)列
中,
(I)設(shè)
,求數(shù)列
的通項(xiàng)公式;
(II)求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知定義域?yàn)镽的二次函數(shù)
f(
x)的最小值為0,且有
,直線(xiàn)
圖象截得的弦長(zhǎng)為
,數(shù)列
,
⑴ 求函數(shù)
f(
x)的解析式;
⑵ 求數(shù)列
的通項(xiàng)公式;
⑶ 設(shè)
的最值及相應(yīng)的
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若等差數(shù)列
的前
項(xiàng)和為
,且
為一確定的常數(shù),則下列各式中,也為確定的常數(shù)的是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
數(shù)列
滿(mǎn)足
="1,"
=
,且
(
n≥2),
則
等于( )
查看答案和解析>>