命題?x0∈R,
x
2
0
+x0+2≤0
的否定是(  )
分析:特稱命題的否定是全稱命題寫出結(jié)果即可.
解答:解:因?yàn)樘胤Q命題的否定是全稱命題,
所以命題?x0∈R,
x
2
0
+x0+2≤0
的否定是:?x∈R,x2+x+2>0.
故選:B.
點(diǎn)評(píng):本題考查特稱命題與全稱命題的否定關(guān)系,注意量詞的變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列四種說法:
①“若am2<bm2,則a<b”的逆命題為真;
②“命題p∨q為真”是“命題p∧q為真”的必要不充分條件;
③命題“?x0∈R使得x2-x>0”的否定是“?x∈R都有x2-x≤0”;
④若實(shí)數(shù)x,y∈[0,1],則滿足:x2+y2<1的概率為
π
4

其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①命題p:?x0∈[-1,1],滿足x02+x0+1>a,使命題P為真的實(shí)數(shù)a的取值范圍為a<3;
②代數(shù)式sina+ain(
2
3
π+a)+ain(
4
3
π+a)的值與角a有關(guān);
③將函數(shù)f(x)=2sin(2x-
π
3
)的圖象向左平移
π
3
個(gè)單位長(zhǎng)度后得到的圖象所對(duì)應(yīng)的函數(shù)是奇函數(shù);
④命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”;
其中正確的命題的序號(hào)是
 (把所有正確的命題序號(hào)寫在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)下面有關(guān)命題的說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使得x02+2x0-8=0”的否定是( 。
A、對(duì)?x∈R,都有x2+2x-8=0B、不存在x∈R,使得x2+2x-8≠0C、對(duì)?x∈R,都有x2+2x-8≠0D、?x0∈R得x02+2x0-8≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有下列四種說法:
①“若am2<bm2,則a<b”的逆命題為真;
②“命題p∨q為真”是“命題p∧q為真”的必要不充分條件;
③命題“?x0∈R使得x2-x>0”的否定是“?x∈R都有x2-x≤0”;
④若實(shí)數(shù)x,y∈[0,1],則滿足:x2+y2<1的概率為
π
4

其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案