【題目】給定兩個(gè)命題,P:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2﹣x+a=0有實(shí)數(shù)根;如果P與Q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.
【答案】
【解析】試題分析:本題以命題的形式考察了一元二次不等式與其方程實(shí)根的問(wèn)題,命題是真命題,即a=0或,若命題是真命題,,若僅有一個(gè)為真命題,即一真一假,所以分別計(jì)算真假,或假真的不等式,求的取值范圍.
試題解析:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立a=0或0≤a<4;
關(guān)于x的方程x2-x+a=0有實(shí)數(shù)根1-4a≥0a≤;
如果p真,且q假,有0≤a<4,且a>,∴<a<4;
如果q真,且p假,有a<0或a≥4,且a≤,∴a<0.
綜上,實(shí)數(shù)a的取值范圍為(-∞,0)∪.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內(nèi)有零點(diǎn),求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0, ]上的單調(diào)性;
(3)當(dāng)x∈[0, ]時(shí),關(guān)于x的方程f(x)=a 恰有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱軸和對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的“共筑中國(guó)夢(mèng)”競(jìng)賽活動(dòng)中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評(píng)委將他們的筆試成績(jī)作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒(méi)有給出甲、乙兩班最后一位選手的成績(jī),只是告訴大家,如果某位選手的成績(jī)高于90分(不含90分),則直接“晉級(jí)”.
(1)求乙班總分超過(guò)甲班的概率;
(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.若主持人從甲乙兩班所有選手成績(jī)中分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,當(dāng)時(shí),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點(diǎn), 是上任意一點(diǎn).
(1)求證: ;
(2)已知二面角的余弦值為,若為的中點(diǎn),求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n .
(1)設(shè)bn= ,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com