4.角α的終邊過函數(shù)y=loga(x-3)+2的定點P,則sin2α+cos2α=( 。
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

分析 利用函數(shù)的圖象經(jīng)過定點P的坐標,任意角的三角函數(shù)的定義,求得sinα和cosα的值,再利用二倍角公式求得要求式子的值.

解答 解:∵函數(shù)y=loga(x-3)+2過定點P(4,2),且角α的終邊過點P,
∴x=4,y=2,r=|OP|=2$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{\sqrt{5}}{5}$,cosα=$\frac{x}{r}$=$\frac{2\sqrt{5}}{5}$,
∴sin2α+cos2α=2sinαcosα+2cos2α-1=2×$\frac{\sqrt{5}}{5}$×$\frac{2\sqrt{5}}{5}$+2×$\frac{20}{25}$-1=$\frac{7}{5}$,
故選:A.

點評 本題主要考查函數(shù)的圖象經(jīng)過定點問題,任意角的三角函數(shù)的定義,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時f(x)=$\frac{2x}{x+2}$.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性(不必證明);
(3)若對任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某濱海旅游公司今年年初用49萬元購進一艘游艇,并立即投入使用,預(yù)計每年的收入為25萬元,此外每年都要花費一定的維護費用,計劃第一年維護費用4萬元,從第二年起,每年的維修費用比上一年多2萬元,設(shè)使用x年后游艇的盈利為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)此游艇使用多少年,可使年平均盈利額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將邊長為1的正三角形薄片,沿一條平行于底邊的直線剪成兩塊,其中一塊是梯形,記$S=\frac{梯形的周長}{梯形的面積}$,則S的最小值是$\frac{4\sqrt{6}}{3}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC三邊a,b,c上的高分別為$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$,1,則cosA等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}$,(t為參數(shù)),以坐標原點為極點,x正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=$\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)寫出直線l的極坐標方程與曲線C的直角坐標方程.
(2)若點P是曲線C上的動點,求點P到直線l的距離的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知:
命題p:若函數(shù)f(x)=x2+|x-a|是偶函數(shù),則a=0.
命題q:?m∈(0,+∞),關(guān)于x的方程mx2-2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中為真命題的是( 。
A.②③B.②④C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知關(guān)于x的不等式ax2+ax+2>0的解集為R,記實數(shù)a的所有數(shù)值構(gòu)成的集合為M.
(1)求M;
(2)若t>0,對?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,a2=3,且2Sn=n(an+1),n∈N*
(1)求{an}的通項公式;
(2)數(shù)列{bn}滿足bn=pn-an,且{bn}的前n項和為Tn,若對任意n∈N*,都有Tn≤T6,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案